Parameters and control algorithms for dynamic
News of the Kabardin-Balkar scientific center of RAS, no. 6-3 (2018), pp. 227-242.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper provides an overview of existing methods used in modern robotics to provide dynamic motion control of multi-link robots. The representative model of multi-link rigid bodies is considered, which is necessary for implementation of a group of algorithms for controlling dynamic mechanical motion. The Newton-Euler recursive algorithm, the composite rigid body algorithm and the articulated body algorithm are described. Complex use of these algorithms allows to provide full control of multilink robotic systems dynamics. Efficiency and accuracy issues of these algorithms are considered. An approach to measuring the efficiency of rigid body dynamics algorithms is described, corresponding tables and graphs characterizing the effectiveness of several versions of the basic algorithms used for kinematic chains are presented
Keywords: multi-link robotic systems, dynamic mechanical motion, dynamics, inverse dynamics, forward dynamics, IDP, motion control.
Mots-clés : FDP
@article{IZKAB_2018_6-3_a20,
     author = {R. N. Yakovlev and P. M. Chernousov and K. D. Krestovnikov and A. V. Denisov},
     title = {Parameters and control algorithms for dynamic},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {227--242},
     publisher = {mathdoc},
     number = {6-3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2018_6-3_a20/}
}
TY  - JOUR
AU  - R. N. Yakovlev
AU  - P. M. Chernousov
AU  - K. D. Krestovnikov
AU  - A. V. Denisov
TI  - Parameters and control algorithms for dynamic
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2018
SP  - 227
EP  - 242
IS  - 6-3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2018_6-3_a20/
LA  - ru
ID  - IZKAB_2018_6-3_a20
ER  - 
%0 Journal Article
%A R. N. Yakovlev
%A P. M. Chernousov
%A K. D. Krestovnikov
%A A. V. Denisov
%T Parameters and control algorithms for dynamic
%J News of the Kabardin-Balkar scientific center of RAS
%D 2018
%P 227-242
%N 6-3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2018_6-3_a20/
%G ru
%F IZKAB_2018_6-3_a20
R. N. Yakovlev; P. M. Chernousov; K. D. Krestovnikov; A. V. Denisov. Parameters and control algorithms for dynamic. News of the Kabardin-Balkar scientific center of RAS, no. 6-3 (2018), pp. 227-242. http://geodesic.mathdoc.fr/item/IZKAB_2018_6-3_a20/

[1] A. I. Motienko, A. L. Ronzhin, A. V. Polyakov, V. E. Kosachev, B. I. Kryuchkov, V. M. Usov, “Roboty dlya avariino-spasatelnykh rabot s pozitsii antropotsentricheskogo podkhoda”, Bezopasnost zhiznedeyatelnosti, 2018, no. 1 (205), 39–46

[2] A. V. Polyakov, A. A. Altunin, B. I. Kryuchkov, A. I. Motienko, A. L. Ronzhin, V. M. Usov, “Ispolzovanie robotov-spasatelei pri razvitii meditsinskikh neshtatnykh situatsii vo vremya vnekorabelnoi deyatelnosti na poverkhnosti Luny”, Aviakosmicheskaya i ekologicheskaya meditsina, 52:2 (2018), 34–41 | MR

[3] R. Featherstone, D. Orin, “Robot dynamics: equations and algorithms”, Proceedings of IEEE International Conference on, Robotics and Automation (ICRA), v. 1, 2000, 826

[4] W. Khalil, E. Dombre, Modeling, identification, control of robots, 2004 | MR

[5] J. J. Craig, “Introduction to robotics: mechanics and control”, Upper Saddle River, 3 (2005), 48–70, Pearson/Prentice Hall, NJ, USA

[6] A. Jain, Robot and multibody dynamics: analysis and algorithms, Springer Science Business Media, 2010 | MR

[7] J. Y.S. Luh, M. W. Walker, R. P.C. Paul, “On-line computational scheme for mechanical manipulators”, Journal of Dynamic Systems, Measurement, and Control, 102:2 (1980), 69–76 | DOI | MR

[8] W. W. Armstrong, “Recursive Solution to the Equations of Motion of n-link Manipulator”, Proc. Fifth World Congress on Theory of Machines and Mechanisms, v. 2, 1979, 1343–1346

[9] R. S. Ball, A Treatise on the Theory of Screws, Cambridge University Press, Cambridge, UK, 1900 | Zbl

[10] R. Featherstone, “The calculation of robot dynamics using articulated-body inertias”, The International Journal of Robotics Research, 2:1 (1983), 13–30 | DOI

[11] Rodriguez G. Kalman filtering, smoothing, “and recursive robot arm forward and inverse dynamics”, IEEE Journal on Robotics and Automation, 3:6 (1987), 624–639 | DOI

[12] G. Rodriguez, K. Kreutz, M. Milman, “A spatial operator algebra for manipulator modeling and control”, International Society for Optics and Photonics, Space Station Automation IV, v. 1006, 1988, 194–210

[13] A. Jain, G. Rodriguez, “An analysis of the kinematics and dynamics of underactuated manipulators”, IEEE Transactions on robotics and automation, 9:4 (1993), 411–422 | DOI | MR

[14] R. J. Wai, R. Muthusamy, “Fuzzy-neural-network inherited sliding-mode control for robot manipulator including actuator dynamics”, IEEE Transactions on Neural Networks and learning systems, 24:2 (2013), 274–287 | DOI | MR

[15] N. Kumar, V. Panwar, N. Sukavanam, S. P. Sharma, J. H. Borm, “Neural network based hybrid force/position control for robot manipulators”, International Journal of Precision Engineering and Manufacturing, 12:3 (2011), 419–426 | DOI

[16] H. Liu, T. Zhang, “Neural network-based robust finite-time control for robotic manipulators considering actuator dynamics”, Robotics and Computer-Integrated Manufacturing, 29:2 (2013), 301–308 | DOI

[17] T. Sun, H. Pei, Y. Pan, H. Zhou, C. Zhang, “Neural network-based sliding mode adaptive control for robot manipulators”, Neurocomputing, 74:14-15 (2011), 2377–2384 | DOI

[18] M. L. Felis, “RBDL: an efficient rigid-body dynamics library using recursive algorithms”, Autonomous Robots, 41:2 (2017), 495–511 | DOI

[19] A. Jain, “Unified formulation of dynamics for serial rigid multibody systems”, Journal of Guidance, Control and Dynamics, 14:3 (1991), 531–542 | DOI | MR | Zbl

[20] R. Featherstone, Rigid body dynamics algorithms, Springer, 2014 | MR

[21] U. M. Ascher, S. J. Ruuth, R. J. Spiteri, “Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations”, Applied Numerical Mathematics, 25:2-3 (1997), 151–167 | DOI | MR | Zbl

[22] R. Featherstone, “A divide-and-conquer articulated-body algorithm for parallel O (log (n)) calculation of rigid-body dynamics”, The International Journal of Robotics Research, 18:9 (1999), 867–875 | DOI

[23] W. Khalil, E. Dombre, Modeling, identification, control of robots, Butterworth-Heinemann, 2004 | MR

[24] Featherstone, R., “An Empirical Study of the Joint Space Inertia Matrix”, Int. J. Robotics Research, 23:9 (2004), 859–871 | DOI

[25] C. A. Balafoutis, R. V. Patel, P. Misra, “Efficient modeling and computation of manipulator dynamics using orthogonal Cartesian tensors”, IEEE Journal on Robotics and Automation, 4:6 (1988), 665–676 | DOI

[26] C. A. Balafoutis, R. V. Patel, “Efficient computation of manipulator inertia matrices and the direct dynamics problem”, IEEE Transactions on Systems, Man and Cybernetics, 19:5 (1989), 1313–1321 | DOI

[27] Balafoutis, C. A., R. V. Patel, Dynamic Analysis of Robot Manipulators: A Cartesian Tensor Approach, Kluwer Academic Publishers, Boston, 1991 | Zbl

[28] H. Brandl, R. Johanni, M. Otter, “A Very Efficient Algorithm for the Simulation of Robots and Similar Multibody Systems Without Inversion of the Mass Matrix”, Theory of Robots, eds. P. Kopacek, I. Troch, K. Desoyer, Pergamon Press, Oxford, 1988, 95–100

[29] R. Featherstone, Robot Dynamics Algorithms, Kluwer Academic Publishers, Boston, 1987

[30] R. Featherstone, “Efficient Factorization of the Joint Space Inertia Matrix for Branched Kinematic Trees”, Int. J. Robotics Research, 24:6 (2005), 487–500 | DOI

[31] J. M. Hollerbach, “A recursive lagrangian formulation of maniputator dynamics and a comparative study of dynamics formulation complexity”, IEEE Transactions on Systems, Man and Cybernetics, 10:11 (1980), 730–736 | DOI | MR

[32] K. W. Lilly, D. E. Orin, “Alternate formulations for the manipulator inertia matrix”, The International Journal of Robotics Research, 10:1 (1991), 64–74 | DOI

[33] K. W. Lilly, Efficient Dynamic Simulation of Robotic Mechanisms, Kluwer Academic Publishers, Boston, 2012

[34] L. McMillan, G. Bishop, “Plenoptic modeling: An image-based rendering system”, Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, 1995, 39–46

[35] M. W. Walker, D. E. Orin, “Efficient dynamic computer simulation of robotic mechanisms”, Journal of Dynamic Systems, Measurement and Control, 104:3 (1982), 205–211 | DOI | Zbl

[36] R. S. Hartenberg, J. Denavit, “A kinematic notation for lower pair mechanisms based on matrices”, Journal of applied mechanics, 77:2 (1955), 215–221 | MR

[37] J. Wittenburg, U. Wolz, “MESA VERDE: A symbolic program for nonlinear articulated-rigid-body dynamics”, ASME Design Engineering Conference (Cincinnati, OH), v. 8, 1985