Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IZKAB_2018_6-3_a2, author = {Z. V. Nagoev and I. A. Pshenokova}, title = {Model of approximation of multidimensional}, journal = {News of the Kabardin-Balkar scientific center of RAS}, pages = {34--40}, publisher = {mathdoc}, number = {6-3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IZKAB_2018_6-3_a2/} }
Z. V. Nagoev; I. A. Pshenokova. Model of approximation of multidimensional. News of the Kabardin-Balkar scientific center of RAS, no. 6-3 (2018), pp. 34-40. http://geodesic.mathdoc.fr/item/IZKAB_2018_6-3_a2/
[1] D. Gilbert, Izbrannye trudy, v 2 t., eds. Pod red. A.N. Parshina, Faktorial, M., 1998
[2] A. N. Kolmogorov, “O predstavlenii nepreryvnykh funktsii neskolkikh peremennykh superpozitsiyami nepreryvnykh funktsii menshego chisla peremennykh”, Doklady AN SSSR, 108 (1956), 179–182 | Zbl
[3] V. I. Arnold, “O predstavlenii funktsii neskolkikh peremennykh v vide superpozitsii funktsii menshego chisla peremennykh”, Matematicheskoe prosveschenie, 1958, no. 3, 41–61 | Zbl
[4] A. Yu. Golubkov, “Postroenie vneshnikh i vnutrennikh funktsii predstavleniya nepreryvnykh funktsii mnogikh peremennykh superpozitsiei nepreryvnykh funktsii odnogo peremennogo”, Fundamentalnaya i prikladnaya matematika, 8:1 (2002), 27–38, MGU | MR | Zbl
[5] V. V. Kruglov, M. I. Dli, R. Yu. Golunov, Nechetkaya logika i iskusstvennye neironnye seti, Fizmatlit, M., 2001, 224 pp.
[6] I. M. Mordashev, “Approksimatsiya funktsii neskolkikh peremennykh summoi menshego chisla peremennykh”, DAN SSSR, 183:4 (1968), 778–779 | MR | Zbl
[7] V. V. Pospelov, O priblizhenii funktsii neskolkikh peremennykh proizvedeniyami funktsii odnogo peremennogo, Institut prikladnoi matematiki AN SSSR, M., 1978, 72 pp. (preprint No32)
[8] V. A. Terekhov, D. V. Efimov, I. Yu. Tyukin, V. N. Antonov, Neirosetevye sistemy upravleniya, Izd-vo SPbGU, SPb., 1999, 265 pp.
[9] M. R. Shura-Bura, “Approksimatsiya funktsii mnogikh peremennykh funktsiyami, kazhdaya iz kotorykh zavisit ot odnogo peremennogo”, Vychislitelnaya matematika, 1957, no. 27, 3–19 | Zbl
[10] I. M. Aleksandrova, V. A. Prourzin, “Metod affinnykh preobrazovanii v zadache ravnomernoi approksimatsii funktsii mnogikh peremennykh”, Voprosy mekhaniki i protsessov upravleniya, Vyp. 18 Matematicheskie voprosy analiza negladkikh modelei, SPbGU, 1995, 19–30
[11] A. V. Timofeev, “Metody obucheniya i samoorganizatsii polinomialnykh neironnykh setei v zadachakh raspoznavaniya obrazov”, Matematicheskie metody raspoznavaniya obrazov, 11:1 (2003), 187–191
[12] S. Khaikin, Neironnye seti. Polnyi kurs, Vilyams, M., 2006
[13] A. I. Galushkin, Neironnye seti. Osnovy teorii, Goryachaya Liniya Telekom, M., 2010
[14] K. Hornik, “Approximation Capabilities of Multilayer Feedforward Networks”, Neural Net-works, 4:2 (1991), 251–257 | DOI | MR
[15] K. Hornik, “Some New Results on Neural Networks Approximation”, Neural Networks, 6:8 (1993), 1069–1072 | DOI
[16] A. R. Barron, “Universal Approximation Bounds for Superpositions of a Sigmoidal Function”, IEEE Trans. Information Theory, 39:3 (1993), 930–945 | DOI | MR | Zbl
[17] V. Kurkova, “Approximation of Functions by Perceptron Networks with Bounded Number of Hidden Units”, Neural Networks, 8:5 (1995), 745–750 | DOI
[18] G. V. Cybenko Approximation by Superpositions of a Sigmoidal function, Mathematics of Control Signals and Systems, 2:4 (1989), 303–314 | DOI | MR | Zbl
[19] F. Rozenblatt, Printsipy neirodinamiki: pertseptrony i teoriya mekhanizmov mozga, Mir, M., 1965
[20] A. N. Gorban, “Obobschennaya approksimatsionnaya teorema i vychislitelnye vozmozhnosti neironnykh setei”, Sibirskii zhurnal vychislitelnoi tekhniki, 1:1 (1998), 12–24 | MR | Zbl
[21] G. V. Cybenko, “Approximation by Superpositions of a Sigmoidal function”, Mathematics of Control Signals and Systems, 2:4 (1989), 303–314 | DOI | MR | Zbl
[22] V. V. Vyugin, Elementy matematicheskoi teorii mashinnogo obucheniya, ucheb. posobie., MFTI: IPPI RAN, M., 2010, 231 pp.
[23] V. N. Vapnik, A. Ya. Chervonenkis, Teoriya raspoznavaniya obrazov (statisticheskie problemy obucheniya), Nauka, M., 1974, 416 pp.
[24] Bellman. R.E., Dynamic Programming (Dover paperback ed.), Princeton University Press, Howard, Princeton, NJ, (2003) [1957] | MR
[25] A. Ronald, Dynamic Programming and Markov Processes, The M.I.T. Press, 1960 | MR | Zbl
[26] S. Rassel, P. Norvig, Iskusstvennyi intellekt: sovremennyi podkhod, 2-e izd, Izdatelskii dom «Vilyame», M., 2006 (per. s angl)
[27] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, Springer, 2014, 739 pp. | MR
[28] Z. V. Nagoev, Intellektika ili Myshlenie v zhivykh i iskusstvennykh sistemakh, Izdatelstvo KBNTs RAN, Nalchik, 2013, 211 pp.
[29] K. Vorontsov, Mashinnoe obuchenie. Kurs lektsii http://www.machinelearning.ru
[30] Sutton Richard S., Barto, G. Andrew, Reinforcement Learning: An Introduction, MIT Press, 1998 | MR
[31] P. Kaelbling Leslie, L. Littman Michael, W. Moore Andrew, “Reinforcement Learning: A Survey”, Journal of Artificial Intelligence Research, 19964, 237–285 | MR
[32] N. Viner, Kibernetika ili Upravlenie i svyaz v zhivotnom i mashine, Sovetskoe radio, M., 1958
[33] V. M. Kureichik, A. A. Kazharov, “Ispolzovanie roevogo intellekta v reshenii NP-trudnykh zadach”, Izvestiya YuFU. Tekhnicheskie nauki, 2011, no. 7 (120), 30–37
[34] A. Orlov, A. Glushchenko, V. Kureichik, “Hybrid genetic algorithm for cutting stock and packaging problems”, EWDTS 2016, art, art. no. 7807680
[35] J. J. Hopfield, D. W. Tank, “«Neural» computation of decisions in optimization problems”, Biological Cybernetics, 52:3 (1985), 141–152 | MR | Zbl
[36] Salakhutdinov Ruslan, Learning deep generative models. proquest.com (PhD thesis), University of Toronto, 2009
[37] Z. V. Nagoev, “Multiagentnye ekzistentsialnye otobrazheniya i funktsii”, Izvestiya Kabardino-Balkarskogo nauchnogo tsentra RAN, 2013, no. 4 (54), 63–71