Modeling the forecast of temporal metrics based on method of reverse propagation of errors and optimization heuristics
News of the Kabardin-Balkar scientific center of RAS, no. 6-3 (2018), pp. 132-137.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article discusses the problem of modeling the time series forecast in the field of mobile development, where you need to have data at what point in time users leave the application to take measures to increase the lifetime and income level brought by the application. The proposed algorithm based on a neural network trained by the back propagation method provides an opportunity to predict different time periods in relation to the number of remaining users in the application. The back propagation method is used in conjunction with heuristics to accelerate convergence and avoid hitting local minima. The scientific novelty is represented by the time series forecasting algorithm, which allows to increase the efficiency of decision-making procedures in intelligent analytical systems. The results of the forecast are presented for different time intervals, characteristic of the mobile application’s use.
Keywords: neural networks, method of back propagation, retention of mobile users, forecasting systems, time series.
@article{IZKAB_2018_6-3_a15,
     author = {M. V. Sychugov and Yu. A. Kravchenko and M. I. Anchyokov},
     title = {Modeling the forecast of temporal metrics based on method of reverse propagation of errors and optimization heuristics},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {132--137},
     publisher = {mathdoc},
     number = {6-3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2018_6-3_a15/}
}
TY  - JOUR
AU  - M. V. Sychugov
AU  - Yu. A. Kravchenko
AU  - M. I. Anchyokov
TI  - Modeling the forecast of temporal metrics based on method of reverse propagation of errors and optimization heuristics
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2018
SP  - 132
EP  - 137
IS  - 6-3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2018_6-3_a15/
LA  - ru
ID  - IZKAB_2018_6-3_a15
ER  - 
%0 Journal Article
%A M. V. Sychugov
%A Yu. A. Kravchenko
%A M. I. Anchyokov
%T Modeling the forecast of temporal metrics based on method of reverse propagation of errors and optimization heuristics
%J News of the Kabardin-Balkar scientific center of RAS
%D 2018
%P 132-137
%N 6-3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2018_6-3_a15/
%G ru
%F IZKAB_2018_6-3_a15
M. V. Sychugov; Yu. A. Kravchenko; M. I. Anchyokov. Modeling the forecast of temporal metrics based on method of reverse propagation of errors and optimization heuristics. News of the Kabardin-Balkar scientific center of RAS, no. 6-3 (2018), pp. 132-137. http://geodesic.mathdoc.fr/item/IZKAB_2018_6-3_a15/

[1] F. Hadiji, R. Sifa, A. Drachen, C. Thurau, K. Kersting, C. Bauckhage, “Predicting Player Churn in the Wild”, Proc. of IEEE CIG, 2014

[2] R. Sifa, F. Hadiji, J. Runge, A. Drachen, K. Kersting, C. Bauckhage, “Predicting Purchase Decisions in Mobile Free-to-Play Games”, Proc. of AAAI AIIDE, 2015

[3] Yu. A. Kravchenko, “Tekhnologiya analiza nadezhnosti adaptivnykh informatsionnykh sred”, Izvestiya YuFU. Tekhnicheskie nauki, 2010, no. 12 (113), 103–108

[4] L. S. Smith, I. A. Gheyas, “A Neural Network Approach to Time Series Forecasting”, Proceedings of the World Congresson Engineering, London, 2009

[5] S. Osovskii, Neironnye seti dlya obrabotki informatsii, per. s polsk. I.D. Rudinskogo, Finansy i statistika, M., 2004, 344 pp.

[6] V. V. Bova, Y. A. Kravchenko, V. V. Kureichik, “Development of distributed information systems: ontological approach”, Advances in Intelligent Systems and Computing, 349 (2015), 113–122 | DOI

[7] Yu. A. Kravchenko, “Otsenka kognitivnoi aktivnosti polzovatelya v sistemakh podderzhki prinyatiya reshenii”, Izvestiya YuFU. Tekhnicheskie nauki, 2009, no. 4 (93), 113–117

[8] Yu. A. Kravchenko, “Tekhnologiya analiza nadezhnosti adaptivnykh informatsionnykh sred”, Izvestiya YuFU. Tekhnicheskie nauki, 2010, no. 12 (113), 103–108

[9] E. V. Kuliev, A. A. Lezhebokov, Yu. A. Kravchenko, “Roevoi algoritm poiskovoi optimizatsii na osnove modelirovaniya povedeniya letuchikh myshei”, Izvestiya YuFU. Tekhnicheskie nauki, 2016, no. 7 (180), 53–62

[10] G. Yu. Chernyshova, Intellektualnyi analiz dannykh dlya studentov spetsialnosti 080801.65 «Prikladnaya informatika (v ekonomike)», ucheb. posobie, Saratovskii gosudarstvennyi sotsialno-ekonomicheskii universitet, Saratov, 2012, 92 pp.