Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IZKAB_2018_6-3_a1, author = {Z. V. Nagoev and I. A. Gurtueva}, title = {Cognitive model for speech perception mechanism}, journal = {News of the Kabardin-Balkar scientific center of RAS}, pages = {24--33}, publisher = {mathdoc}, number = {6-3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IZKAB_2018_6-3_a1/} }
Z. V. Nagoev; I. A. Gurtueva. Cognitive model for speech perception mechanism. News of the Kabardin-Balkar scientific center of RAS, no. 6-3 (2018), pp. 24-33. http://geodesic.mathdoc.fr/item/IZKAB_2018_6-3_a1/
[1] D. Jurafsky, J. Martin, Speech and Language Processing: An introduction to natural language processing, computational linguistics, and speech recognition, 2nd edition, Prentice Hall, 2008, 1024 pp.
[2] A. Marti, M. Cobos, J. Lopez, “Automatic Speech Recognition in Cocktail-Party Situations: A specific Training for Separated Speech”, The Journal of the Acoustical Society of America, 2012, 1529–1535 | DOI
[3] E. M. Zion Golumbic, N. Ding, S.et al. Bickel, “Mechanisms underlying selective neuronal tracking of attended speech at a “cocktail party””, Neuron, 77:5 (2013), 980–991 | DOI
[4] I. L. Mazurenko, “Kompyuternye sistemy raspoznavaniya rechi”, Intellektualnye sistemy, 3:1–2 (1998), 117–134
[5] Z. V. Nagoev, Intellektika ili Myshlenie v zhivykh i iskusstvennykh sistemakh, Izdatelstvo KBNTs RAN, Nalchik, 2013, 211 pp.
[6] V. Gupta, “A Survey of Natural Language Processing Techniques”, International Journal of Computer Science Engineering Technology (IJCSET), 5:1 (2014), 14–16
[7] W. Ghai, N. Singh, “Literature Review on Automatic Speech Recognition”, International Journal of Computer Applications, 41:8 (2012), 42–50 | DOI
[8] R. Reddy, “Speech Recognition by Machine: A Review”, Proceedings of the IEEE, 64:4 (1976), 501–531 | DOI
[9] B. P. Tazhev, I. A. Gurtueva, “O nekotorykh podkhodakh k resheniyu zadachi avtomaticheskogo raspoznavaniya rechi”, Trudy mezhdunarodnoi konferentsii po kompyuternoi i kognitivnoi lingvistike (TEL 2016) (Kazan, 21-24 aprelya 2016 g.), 217–220
[10] A. Waibel, K. F. Lee, Readings in Speech Recognition, Morgan Kaufman, 1990, 680 pp.
[11] J. F. Hemdal, G. W. Hughes, “A Feature Based Computer Recognition Program for the Modeling of Vowel Perception”, Models for the Perception of Speech and Visual Form, eds. W. Wathen-Dunn, MIT Press, Cambridge, MA, 1967
[12] N. Pappas, T. Meyera, A Survey on Language Modeling Using Neural Networks, Idiap-Research Report-32-2012, 2012, 21 pp.
[13] A. I. Galushkin, “O metodakh nastroiki mnogosloinykh neironnykh setei”, XII Vserossiiskoe soveschanie po problemam upravleniya VSPU (Moskva, 16-19 iyunya 2014 g.), 2014, 3936–3947
[14] W. De Mulder, S. Bethard, M. F. Moens, “A Survey on the Application of Recurrent Neural Networks to Statistical Language Modeling”, Computer Speech and Language, 30:1 (2015), 61–98 | DOI
[15] L. Deng, X. Li, “Machine Learning Paradigms for Speech Recognition: An Overview”, IEEE Transactions on Audio, Speech, and Language Processing, 21:5 (2013), 1060–1089 | DOI | MR
[16] A. Mohamed, G. Dahl, G. Hinton, “Acoustic modeling using deep belief networks”, IEEE Audio, Speech, Lang. Process, 20:1 (2012), 14–22 | DOI
[17] G. Hinton, L. Deng, D. Yu, al. et, “Deep neural networks for acoustic modeling in speech recognition”, IEEE Signal Process. Mag, 29:6 (2012), 82–97 | DOI | MR
[18] L. Deng, X. Li, “Machine Learning Paradigms for Speech Recognition: An Overview”, IEEE Transactions on Audio, Speech, and Language Processing, 21:21 (2013), 1060–1089 | DOI | MR
[19] O. Abdel-Hamid, A. Mohamed, H. Jiang, G. Penn, “Applying convolutional neural networks concepts to hybrid NN-HMM model for speech recognition”, Proc. IEEE Int. Conf. Acoust., Speech, Signal Process, 2012, 4277–4280
[20] L. R. Zinder, Obschaya fonetika, Vyssh. shkola, M., 1979, 315 pp.
[21] M. Minsky, The Society of Mind, Simon and Shuster, New York, 1988, 336 pp.
[22] M. S. Ed. Gazzaniga, Conversations in the Cognitive Neuroscience, The MIT Press, 1999, 202 pp.
[23] N. A. Chomsky, “A Review of Skinner's Verbal Behavior”, Readings in the Psychology of Language, eds. L.A. Jakobovits and M.S. Miron, 1967, 142
[24] P. Haikonen, The Cognitive Approach to Conscious Machines, imprint Academic, Exeter, UK, 2003, 300 pp.
[25] A. Newell, Unified Theories of Cognition, Harvard University Press, Cambridge, Massachusetts, 1990, 576 pp.
[26] F. De Sossyur, Kurs obschei lingvistiki, eds. Sh. Balli, A. Seshe, Izd-vo Ural. un-ta, Ekaterinburg, 1999, 432 pp.
[27] D. H. Schunk, Learning Theories: An Educational Perspective, 6th, Pearson Merrill Prentice Hall, 2011, 576 pp.
[28] M. Wooldridge, An Introduction to MultiAgent Systems, Wiley, 2009, 484 pp.
[29] Setevaya biblioteka otkrytogo dostupa, arXiv: (data obrascheniya: 01.10.2017) abs/1610.08602
[30] Z. V. Nagoev, O. V. Nagoeva, “Zritelnyi analizator intellektualnogo robota dlya obrabotki nestrukturirovannykh dannykh na osnove multiagentnoi neirokognitivnoi arkhitektury”, Perspektivnye sistemy i zadachi upravleniya, Materialy XII Vserossiiskoi nauchno-prakticheskoi konferentsii, YuFU, Rostov-na-Donu, 2017, 457–467
[31] V. P. Morozov, I. A. Vartanyan, V. I. Galunov, Vospriyatie rechi: voprosy funktsionalnoi asimmetrii mozga, Nauka, L., 1988, 135 pp.
[32] B. D. Van Veen, K. M. Buckley, “Beamforming: A Versatile Approach to Spatial Filtering”, IEEE ASSP Magazine, 5:2 (1988), 4–24 | DOI
[33] Z. V. Nagoev, O. V. Nagoeva, “Izvlechenie znanii iz mnogomodalnykh potokov nestrukturirovannykh dannykh na osnove samoorganizatsii multiagentnoi kognitivnoi arkhitektury mobilnogo robota”, Izvestiya KBNTs RAN, 2015, no. 6 (68), 73–85
[34] Z. V. Nagoev, V. A. Denisenko, L. A. Lyutikova, “Sistema obucheniya avtonomnogo selskokhozyai-stvennogo robota raspoznavaniyu staticheskikh izobrazhenii na osnove multiagentnykh kognitivnykh arkhitektur”, Ustoichivoe razvitie gornykh territorii, 2018, no. 2, 289–297