Non-local boundary value problem for a system
News of the Kabardin-Balkar scientific center of RAS, no. 6-1 (2018), pp. 42-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

A non-local boundary value problem in a rectangular domain for a fractional hyperbolic system with constant coefficients was investigated, in case when all of the eigenvalues of the matrix coefficient in the main part are signdetermined. The conditions for the unique solvability of the problem under study are obtained.
Keywords: fractional derivatives, fractional hyperbolic systems, non-local boundary value problem, conditions for unique solvability.
@article{IZKAB_2018_6-1_a6,
     author = {M. O. Mamchuev},
     title = {Non-local boundary value problem for a system},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {42--47},
     publisher = {mathdoc},
     number = {6-1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2018_6-1_a6/}
}
TY  - JOUR
AU  - M. O. Mamchuev
TI  - Non-local boundary value problem for a system
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2018
SP  - 42
EP  - 47
IS  - 6-1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2018_6-1_a6/
LA  - ru
ID  - IZKAB_2018_6-1_a6
ER  - 
%0 Journal Article
%A M. O. Mamchuev
%T Non-local boundary value problem for a system
%J News of the Kabardin-Balkar scientific center of RAS
%D 2018
%P 42-47
%N 6-1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2018_6-1_a6/
%G ru
%F IZKAB_2018_6-1_a6
M. O. Mamchuev. Non-local boundary value problem for a system. News of the Kabardin-Balkar scientific center of RAS, no. 6-1 (2018), pp. 42-47. http://geodesic.mathdoc.fr/item/IZKAB_2018_6-1_a6/

[1] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.

[2] A. Heibig, “Existence of solutions for a fractional derivative system of equations”, Integral Equation and Operator Theory, 72 (2012), 483–508 | DOI | MR | Zbl

[3] A. N. Kochubei, “Fractional-parabolic systems”, Potential Analysis, 37 (2012), 1–30 | DOI | MR | Zbl

[4] A. N. Kochubei, “Fractional-hiperbolic systems”, Fractional Calculus and Applied Analysis, 16:4 (2013), 860–873 | DOI | MR | Zbl

[5] M. O. Mamchuev, “Kraevaya zadacha dlya sistemy uravnenii s chastnymi proizvodnymi drobnogo poryadka”, Differentsialnye uravneniya, 44:12 (2008), 1674–1686 | MR

[6] M. O. Mamchuev, “Kraevaya zadacha dlya sistemy mnogomernykh differentsialnykh uravnenii drobnogo poryadka”, Vestnik SamGU. Estestvennonauchnaya seriya, 8:2 (67) (2008), 164–175

[7] M. O. Mamchuev, “Kraevaya zadacha dlya lineinoi sistemy uravnenii s chastnymi proizvodnymi drobnogo poryadka”, Chelyabinskii fiziko-matematicheskii zhurnal, 2:3 (2017), 295–311 | MR

[8] M. O. Mamchuev, “Zadacha Koshi dlya sistemy uravnenii s chastnymi proizvodnymi drobnogo poryadka”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, 2018, 76–82 | MR | Zbl

[9] M. O. Mamchuev, “Kraevye zadachi dlya sistemy differentsialnykh uravnenii s chastnymi proizvodnymi drobnogo poryadka v neogranichennykh oblastyakh”, Doklady Adygskoi (Cherkesskoi) Mezhdunarodnoi akademii nauk, 7:1 (2003), 60–63

[10] M. O. Mamchuev, “Fundamentalnoe reshenie sistemy uravnenii s chastnymi proizvodnymi drobnogo poryadka”, Differentsialnye uravneniya, 46:8 (2010), 1113–1124 | MR | Zbl

[11] M. O. Mamchuev, “Zadacha Koshi v nelokalnoi postanovke dlya sistemy uravnenii s chastnymi proizvodnymi drobnogo poryadka”, Differentsialnye uravneniya, 48:3 (2012), 351–358 | MR | Zbl

[12] M. O. Mamchuev, “Smeshannaya zadacha dlya nagruzhennoi sistemy uravnenii s proizvodnymi Rimana-Liuvillya”, Matematicheskie zametki, 97:3 (2015), 428–439 | MR | Zbl

[13] M. O. Mamchuev, “Smeshannaya zadacha dlya sistemy uravnenii s chastnymi proizvodnymi drobnogo poryadka”, Differentsialnye uravneniya, 52:1 (2016), 132–137 | MR

[14] A. V. Pskhu, Uravneniya s chastnymi proizvodnymi drobnogo poryadka, Nauka, M., 2005, 199 pp.