Numerical method for solving the local problem
News of the Kabardin-Balkar scientific center of RAS, no. 5 (2018), pp. 34-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers a parabolic equation with variable coefficients with a fractional derivative with respect to time, when a concentrated heat capacity of a certain value is placed on the boundary of the region. A priori estimates in the differential and difference interpretations are obtained. Numerical calculations using the sweep method are conducted.
Keywords: fractional order derivative, solution stability, prior estimate, stability of the difference scheme.
@article{IZKAB_2018_5_a4,
     author = {F. M. Nakhusheva and M. M. Lafisheva and M. M. Karmokov and M. A. Dzhankulaeva},
     title = {Numerical method for solving the local problem},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {34--43},
     publisher = {mathdoc},
     number = {5},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2018_5_a4/}
}
TY  - JOUR
AU  - F. M. Nakhusheva
AU  - M. M. Lafisheva
AU  - M. M. Karmokov
AU  - M. A. Dzhankulaeva
TI  - Numerical method for solving the local problem
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2018
SP  - 34
EP  - 43
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2018_5_a4/
LA  - ru
ID  - IZKAB_2018_5_a4
ER  - 
%0 Journal Article
%A F. M. Nakhusheva
%A M. M. Lafisheva
%A M. M. Karmokov
%A M. A. Dzhankulaeva
%T Numerical method for solving the local problem
%J News of the Kabardin-Balkar scientific center of RAS
%D 2018
%P 34-43
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2018_5_a4/
%G ru
%F IZKAB_2018_5_a4
F. M. Nakhusheva; M. M. Lafisheva; M. M. Karmokov; M. A. Dzhankulaeva. Numerical method for solving the local problem. News of the Kabardin-Balkar scientific center of RAS, no. 5 (2018), pp. 34-43. http://geodesic.mathdoc.fr/item/IZKAB_2018_5_a4/

[1] R. R. Nigmatullin, “The realization of generalized transfer equation in a medium with fractal geometry”, Phys. Status solidi. B., 133, 425–430 | DOI

[2] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie, Fizmatgiz, M., 2003

[3] A. A. Samarskii, “Ob odnoi zadache rasprostraneniya tepla”, Izbrannye trudy A.A. Samarskogo, MAKS Press., M., 2003, 1–22 | MR

[4] M. Kh. Shkhanukov-Lafishev, F. M. Nakhusheva, M. M. Lafisheva, M. M. Mambetova, “Lokalno-odnomernaya skhema dlya uravneniya teploprovodnosti s sosredotochennoi teploemkostyu”, Vladikavkazskii matematicheskii zhurnal, 15:4 (2013), 59–65 | MR

[5] F. M. Nakhusheva, F. Kh. Kudaeva, A. A. Kaigermazov, M. M. Karmokov, “Raznostnaya skhema dlya uravneniya diffuzii drobnogo poryadka s sosredotochennoi teploemkostyu”, Sovremennye problemy nauki i obrazovaniya, 2015, no. 2-2, 839

[6] F. M. Nakhusheva, V. A. Vodakhova, F. Kh. Kudaeva, Z. V. Abaeva, “Lokalno-odnomernaya skhema dlya uravneniya diffuzii drobnogo poryadka s sosredotochennoi teploemkostyu”, Sovremennye problemy nauki i obrazovaniya, 2015, no. 2, 763

[7] F. M. Nakhusheva, M. A. Dzhankulaeva, F. M. Nakhusheva, “Uravnenie teploprovodnosti s drobnoi proizvodnoi po vremeni s sosredotochennoi teploemkostyu”, Mezhdunarodnyi zhurnal prikladnykh i fundamentalnykh issledovanii, 2017, no. 8 (chast 1), 22–27

[8] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1997, 688 pp.

[9] A. A. Samarskii, Teoriya raznostnykh skhem, Nauka, M., 1977, 616 pp.

[10] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973, 407 pp.

[11] V. Kh. Shogenov, S. K. Kumykova, M. Kh. Shkhanukov, “Obobschennoe uravnenie perenosa i drobnye proizvodnye”, Dokl. AMAN, 2:1 (1996), 43–45

[12] M. Kh. Shkhanukov, “O skhodimosti raznostnykh skhem dlya differentsialnykh uravnenii s drobnoi proizvodnoi”, Doklady RAN, 348 (1996), 746–748 | MR | Zbl