Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IZKAB_2018_5_a4, author = {F. M. Nakhusheva and M. M. Lafisheva and M. M. Karmokov and M. A. Dzhankulaeva}, title = {Numerical method for solving the local problem}, journal = {News of the Kabardin-Balkar scientific center of RAS}, pages = {34--43}, publisher = {mathdoc}, number = {5}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IZKAB_2018_5_a4/} }
TY - JOUR AU - F. M. Nakhusheva AU - M. M. Lafisheva AU - M. M. Karmokov AU - M. A. Dzhankulaeva TI - Numerical method for solving the local problem JO - News of the Kabardin-Balkar scientific center of RAS PY - 2018 SP - 34 EP - 43 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IZKAB_2018_5_a4/ LA - ru ID - IZKAB_2018_5_a4 ER -
%0 Journal Article %A F. M. Nakhusheva %A M. M. Lafisheva %A M. M. Karmokov %A M. A. Dzhankulaeva %T Numerical method for solving the local problem %J News of the Kabardin-Balkar scientific center of RAS %D 2018 %P 34-43 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/IZKAB_2018_5_a4/ %G ru %F IZKAB_2018_5_a4
F. M. Nakhusheva; M. M. Lafisheva; M. M. Karmokov; M. A. Dzhankulaeva. Numerical method for solving the local problem. News of the Kabardin-Balkar scientific center of RAS, no. 5 (2018), pp. 34-43. http://geodesic.mathdoc.fr/item/IZKAB_2018_5_a4/
[1] R. R. Nigmatullin, “The realization of generalized transfer equation in a medium with fractal geometry”, Phys. Status solidi. B., 133, 425–430 | DOI
[2] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie, Fizmatgiz, M., 2003
[3] A. A. Samarskii, “Ob odnoi zadache rasprostraneniya tepla”, Izbrannye trudy A.A. Samarskogo, MAKS Press., M., 2003, 1–22 | MR
[4] M. Kh. Shkhanukov-Lafishev, F. M. Nakhusheva, M. M. Lafisheva, M. M. Mambetova, “Lokalno-odnomernaya skhema dlya uravneniya teploprovodnosti s sosredotochennoi teploemkostyu”, Vladikavkazskii matematicheskii zhurnal, 15:4 (2013), 59–65 | MR
[5] F. M. Nakhusheva, F. Kh. Kudaeva, A. A. Kaigermazov, M. M. Karmokov, “Raznostnaya skhema dlya uravneniya diffuzii drobnogo poryadka s sosredotochennoi teploemkostyu”, Sovremennye problemy nauki i obrazovaniya, 2015, no. 2-2, 839
[6] F. M. Nakhusheva, V. A. Vodakhova, F. Kh. Kudaeva, Z. V. Abaeva, “Lokalno-odnomernaya skhema dlya uravneniya diffuzii drobnogo poryadka s sosredotochennoi teploemkostyu”, Sovremennye problemy nauki i obrazovaniya, 2015, no. 2, 763
[7] F. M. Nakhusheva, M. A. Dzhankulaeva, F. M. Nakhusheva, “Uravnenie teploprovodnosti s drobnoi proizvodnoi po vremeni s sosredotochennoi teploemkostyu”, Mezhdunarodnyi zhurnal prikladnykh i fundamentalnykh issledovanii, 2017, no. 8 (chast 1), 22–27
[8] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1997, 688 pp.
[9] A. A. Samarskii, Teoriya raznostnykh skhem, Nauka, M., 1977, 616 pp.
[10] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973, 407 pp.
[11] V. Kh. Shogenov, S. K. Kumykova, M. Kh. Shkhanukov, “Obobschennoe uravnenie perenosa i drobnye proizvodnye”, Dokl. AMAN, 2:1 (1996), 43–45
[12] M. Kh. Shkhanukov, “O skhodimosti raznostnykh skhem dlya differentsialnykh uravnenii s drobnoi proizvodnoi”, Doklady RAN, 348 (1996), 746–748 | MR | Zbl