Formal statement of the tasks
News of the Kabardin-Balkar scientific center of RAS, no. 6-2 (2017), pp. 191-196.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work analyzes the existing approaches designed to solve the problems of recognition, decision-making and management applied in agriculture. Formal statements of problems of recognition, decision-making and control are presented, the possibility of their generalization by the problem of approximation of the function is demonstrated.
Keywords: multi-agent systems, self-organization, multi-agent neuron networks, precision farming, agricultural robotics.
@article{IZKAB_2017_6-2_a20,
     author = {I. A. Pshenokova and M. I. Anchekov and V. A. Denisenko},
     title = {Formal statement of the tasks},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {191--196},
     publisher = {mathdoc},
     number = {6-2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2017_6-2_a20/}
}
TY  - JOUR
AU  - I. A. Pshenokova
AU  - M. I. Anchekov
AU  - V. A. Denisenko
TI  - Formal statement of the tasks
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2017
SP  - 191
EP  - 196
IS  - 6-2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2017_6-2_a20/
LA  - ru
ID  - IZKAB_2017_6-2_a20
ER  - 
%0 Journal Article
%A I. A. Pshenokova
%A M. I. Anchekov
%A V. A. Denisenko
%T Formal statement of the tasks
%J News of the Kabardin-Balkar scientific center of RAS
%D 2017
%P 191-196
%N 6-2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2017_6-2_a20/
%G ru
%F IZKAB_2017_6-2_a20
I. A. Pshenokova; M. I. Anchekov; V. A. Denisenko. Formal statement of the tasks. News of the Kabardin-Balkar scientific center of RAS, no. 6-2 (2017), pp. 191-196. http://geodesic.mathdoc.fr/item/IZKAB_2017_6-2_a20/

[1] M. I. Anchekov, “Kontseptsiya multiagentnoi neironnoi seti”, Izvestiya Kabardino-Balkarskogo nauchnogo tsentra RAN, 2011, Nalchik

[2] M. I. Anchekov, A. L. Kilchukova, S. Kh. Shalova, “Reshenie problem avtomatizatsii protsessa sbora plodoovoschnoi produktsii”, Inzhenernyi vestnik Dona, 2016, no. 4 ivdon.ru/ ru/magazine/archive/n4y2016/3826

[3] Kozhevnikov M.M, A. V. Gospod, “Planirovanie traektorii promyshlennykh robotov na osnove neironnykh setei”, Issledovaniya naukograda, 2012, no. 1

[4] Khaikin S. Neironnye seti polnyi kurs, Vilyams, M., 2008, 1104 pp.

[5] N. S. Altman, “An introduction to kernel and nearest-neighbor nonparametric regression”, The American Statistician, 1992, no. 46, 175–185 | MR

[6] M. I. Anchokov, “Solution to the problem of training a multi-agent neural network by means of a multi-chromosome genetic algorithm”, 14th International Conference on Hybrid Intelligent Systems., IEEE, 2014

[7] Danilo S. Jodas, Norian Marranghello, Aledir S. Pereira, C. Rodrigo, “Guido Comparing Support Vector Machines and Artificial Neural Networks in the Recognition of Steering Angle for Driving of Mobile Robots Through Paths in Plantations”, Procedia Computer Science, 2013, no. 18, 240–249

[8] “Dervis Karaboga D, An Idea Based On Honey Bee Swarm for Numerical Optimization”, Technical Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department, 2005

[9] Ji-yong S, Xiao-bo Z, “Diagnostics of nitrogen deficiency in mini-cucumber plant by near infrared reflectance spectroscopy”, African Journal of Biotechnology, 2011, no. 85

[10] “Keyvan Asefpour Vakilian An artificial neural network approach to identify fungal diseases of cucumber (Cucumis sativus L.) plants using digital image processing”, Archives of Phytopathology and Plant Protection, 2013, no. 46

[11] “Mihai Duguleana Neural networks based reinforcement learning for mobile robots obstacle avoidance”, Expert Systems with Applications, 2016, no. 15, 104–115

[12] D. T. Castellani M. Pham, “Benchmarking and Comparison of Nature-Inspired Population Based Continuous Optimisation Algorithms”, Soft Computing, 2013, 1–33

[13] Yudong Zhang, Shuihua Wang, Genlin Ji, Preetha Phillips, “Fruit classification using computer vision and feedforward neural network”, Journal of Food Engineering, 2014, no. 143, 167–177