A boundary value problem with the Samarsky integral condition for a first-order partial differential equation
News of the Kabardin-Balkar scientific center of RAS, no. 6-1 (2017), pp. 10-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper a representation of the solution of boundary value problem with integral condition for the first order partial differential equation with the Dzhrbashyan - Nersesyan operator is obtained. The existence and uniqueness theorem is proved.
Keywords: Partial differential equation, Dzhrbashyan and Nersesyan derivative, fractional integro-differentiation, integral condition.
@article{IZKAB_2017_6-1_a1,
     author = {F.T. Bogatyreva},
     title = {A boundary value problem with the {Samarsky} integral condition for a first-order partial differential equation},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {10--14},
     publisher = {mathdoc},
     number = {6-1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2017_6-1_a1/}
}
TY  - JOUR
AU  - F.T. Bogatyreva
TI  - A boundary value problem with the Samarsky integral condition for a first-order partial differential equation
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2017
SP  - 10
EP  - 14
IS  - 6-1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2017_6-1_a1/
LA  - ru
ID  - IZKAB_2017_6-1_a1
ER  - 
%0 Journal Article
%A F.T. Bogatyreva
%T A boundary value problem with the Samarsky integral condition for a first-order partial differential equation
%J News of the Kabardin-Balkar scientific center of RAS
%D 2017
%P 10-14
%N 6-1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2017_6-1_a1/
%G ru
%F IZKAB_2017_6-1_a1
F.T. Bogatyreva. A boundary value problem with the Samarsky integral condition for a first-order partial differential equation. News of the Kabardin-Balkar scientific center of RAS, no. 6-1 (2017), pp. 10-14. http://geodesic.mathdoc.fr/item/IZKAB_2017_6-1_a1/

[1] M. M. Dzhrbashyan, A. B. Nersesyan, “Drobnye proizvodnye i zadacha Koshi dlya differentsialnykh uravnenii drobnogo poryadka”, Izv. AN ArmSSR., Matem., 1968, 3–28

[2] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie, FIZMATLIT, M., 2003, 272 pp.

[3] A. V. Pskhu, “Kraevaya zadacha dlya mnogomernogo differentsialnogo uravneniya drobnogo poryadka”, Differentsialnye uravneniya, 47:3 (2011), 385–395 | MR

[4] A. V. Pskhu, “Fundamentalnoe reshenie diffuzionno-volnovogo uravneniya drobnogo poryadka”, Izvestiya RAN, 73:2 (2009), 385–395 | MR

[5] Ph. Clement, G. Gripenberg, Londen S-O, “Schauder estimates for equations with fractional derivatives”, Transactions of the American Mathematical Society, 352:5 (2000), 2239–2260 | DOI | MR | Zbl

[6] A. V. Pskhu, “Reshenie kraevoi zadachi dlya differentsialnogo uravneniya s chastnymi proizvodnymi drobnogo poryadka”, Dokl. Adygskoi (Cherkesskoi) Mezhdunarodnoi akademii nauk, 5:1 (2000), 45–53

[7] A. V. Pskhu, “O kraevoi zadache dlya uravneniya v chastnykh proizvodnykh drobnogo poryadka v oblasti s krivolineinoi granitsei”, Differentsialnye uravneniya, 51:8 (2015), 1076–1082 | MR | Zbl

[8] M. O. Mamchuev, “Kraevaya zadacha dlya uravneniya pervogo poryadka s chastnoi proizvodnoi drobnogo poryadka s peremennymi koeffitsientami”, Dokl. Adygskoi (Cherkesskoi) Mezhdunarodnoi akademii nauk, 11:1 (2009), 32–35

[9] M. O. Mamchuev, Kraevye zadachi dlya uravnenii i sistem uravnenii s chastnymi proizvodnymi drobnogo poryadka, Izd-vo KBNTs RAN, Nalchik, 2013, 200 pp.

[10] R. O. Kenetova, F. M. Losanova, “O nelokalnoi kraevoi zadache dlya obobschennogo uravneniya Makkendrika-Fon Ferstera”, Izvestiya KBNTs RAN, 2017, no. 2 (76)

[11] F. T. Bogatyreva, “Kraevaya zadacha dlya uravneniya v chastnykh proizvodnykh s operatorom drobnogo differentsirovaniya Dzhrbashyana-Nersesyana”, Doklady Adygskoi (Cherkesskoi) Mezhdunarodnoi akademii nauk, 17:2 (2015), 17–24

[12] A. V. Pskhu, Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, Moskva, 2005

[13] E. M. Wright, “The generalized Bessel function of order greater than one”, Quart J. Math., Oxford Ser, 11 (1940), 36–48 | DOI | MR