On a nonlocal boundary-value problem for the
News of the Kabardin-Balkar scientific center of RAS, no. 2 (2017), pp. 49-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the generalized McKendrick – von Foerster equation with the operator of fractional differentiation in the sense of Riemann – Liouville, we consider a non-local boundary value problem with an integral condition. The dynamics of population size and age structure relation is investigated. The existence and uniqueness theorem for the problem is proved.
Keywords: Generalized McKendrick – von Foerster equation, integral condition, non-local problem, Riemann – Liouville fractional differential operator.
@article{IZKAB_2017_2_a2,
     author = {R. O. Kenetova and F. M. Losanova},
     title = {On a nonlocal boundary-value problem for the},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {49--53},
     publisher = {mathdoc},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2017_2_a2/}
}
TY  - JOUR
AU  - R. O. Kenetova
AU  - F. M. Losanova
TI  - On a nonlocal boundary-value problem for the
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2017
SP  - 49
EP  - 53
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2017_2_a2/
LA  - ru
ID  - IZKAB_2017_2_a2
ER  - 
%0 Journal Article
%A R. O. Kenetova
%A F. M. Losanova
%T On a nonlocal boundary-value problem for the
%J News of the Kabardin-Balkar scientific center of RAS
%D 2017
%P 49-53
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2017_2_a2/
%G ru
%F IZKAB_2017_2_a2
R. O. Kenetova; F. M. Losanova. On a nonlocal boundary-value problem for the. News of the Kabardin-Balkar scientific center of RAS, no. 2 (2017), pp. 49-53. http://geodesic.mathdoc.fr/item/IZKAB_2017_2_a2/

[1] Ebeling Verner, Engel Andreas, Faistel Rainer, Fizika protsessov evolyutsii, Per. s nem. Yu.A. Danilova, Editorial URSS, M., 2001, 328 pp.

[2] A. M. Nakhushev, Uravnenie matematicheskoi biologii dlya universitetov, ucheb. posobie, Vyssh. shk., M., 1995, 301 pp.

[3] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie, Fizmatlit., M., 2003, 272 pp.

[4] A. V. Pskhu, “Kraevaya zadacha dlya differentsialnogo uravneniya s chastnymi proizvodnymi drobnogo poryadka”, Izvestiya KBNTs RAN, 2002, no. 1 (8), 76–78

[5] M. O. Mamchuev, “Kraevaya zadacha dlya uravneniya pervogo poryadka s chastnoi proizvodnoi drobnogo poryadka s peremennymi koeffitsientami”, Doklady AMAN, 11:1 (2009), 32–35

[6] M. O. Mamchuev, “Zadacha Koshi v nelokalnoi postanovke dlya uravneniya pervogo poryadka s chastnoi proizvodnoi drobnogo poryadka s peremennymi koeffitsientami”, Doklady AMAN, 11:2 (2009), 21–24

[7] F. T. Bogatyreva, “Kraevaya zadacha dlya uravneniya v chastnykh proizvodnykh s operatorom drobnogo differentsirovaniya”, Doklady AMAN, 17:2 (2015), 17–24

[8] A. A. Kaigermazov, F. Kh. Kudaeva, “Statsionarnye sostoyaniya obobschennoi populyatsionnoi modeli Veibulla”, Yuzhno-Sibirskii nauchnyi vestnik, 2015, no. 1(9), mart, 10–14

[9] M. O. Kovaleva, Vozrastnaya struktura izolirovannoi populyatsii, I Vserossiiskogo kongressa molodykh uchenykh, Sbornik trudov, NIU ITMO, SPb, 2012, 15–20

[10] A. V. Pskhu, Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M, 2005, 199 pp.