On a nonlocal boundary-value problem for the
News of the Kabardin-Balkar scientific center of RAS, no. 2 (2017), pp. 49-53

Voir la notice de l'article provenant de la source Math-Net.Ru

For the generalized McKendrick – von Foerster equation with the operator of fractional differentiation in the sense of Riemann – Liouville, we consider a non-local boundary value problem with an integral condition. The dynamics of population size and age structure relation is investigated. The existence and uniqueness theorem for the problem is proved.
Keywords: Generalized McKendrick – von Foerster equation, integral condition, non-local problem, Riemann – Liouville fractional differential operator.
@article{IZKAB_2017_2_a2,
     author = {R. O. Kenetova and F. M. Losanova},
     title = {On a nonlocal boundary-value problem for the},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {49--53},
     publisher = {mathdoc},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2017_2_a2/}
}
TY  - JOUR
AU  - R. O. Kenetova
AU  - F. M. Losanova
TI  - On a nonlocal boundary-value problem for the
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2017
SP  - 49
EP  - 53
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2017_2_a2/
LA  - ru
ID  - IZKAB_2017_2_a2
ER  - 
%0 Journal Article
%A R. O. Kenetova
%A F. M. Losanova
%T On a nonlocal boundary-value problem for the
%J News of the Kabardin-Balkar scientific center of RAS
%D 2017
%P 49-53
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2017_2_a2/
%G ru
%F IZKAB_2017_2_a2
R. O. Kenetova; F. M. Losanova. On a nonlocal boundary-value problem for the. News of the Kabardin-Balkar scientific center of RAS, no. 2 (2017), pp. 49-53. http://geodesic.mathdoc.fr/item/IZKAB_2017_2_a2/