A priori estimate of solution of equation with the fractal Laplace operator in the main part
News of the Kabardin-Balkar scientific center of RAS, no. 2 (2016), pp. 21-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work the author obtained a priori estimate of solution of equation with Riemann-Liouville operator of fractional differentiation, satisfying nonlocal boundary condition, and corresponding in the case of integer values of order of fractional derivatives to equation with the Laplace operator in the main part.
Keywords: nonlocal boundary condition, priori estimate, the Riemann-Liouville operator, ABC method.
@article{IZKAB_2016_2_a3,
     author = {O. Kh. Masaeva},
     title = {A priori estimate of solution of equation with the fractal {Laplace} operator in the main part},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {21--24},
     publisher = {mathdoc},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2016_2_a3/}
}
TY  - JOUR
AU  - O. Kh. Masaeva
TI  - A priori estimate of solution of equation with the fractal Laplace operator in the main part
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2016
SP  - 21
EP  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2016_2_a3/
LA  - ru
ID  - IZKAB_2016_2_a3
ER  - 
%0 Journal Article
%A O. Kh. Masaeva
%T A priori estimate of solution of equation with the fractal Laplace operator in the main part
%J News of the Kabardin-Balkar scientific center of RAS
%D 2016
%P 21-24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2016_2_a3/
%G ru
%F IZKAB_2016_2_a3
O. Kh. Masaeva. A priori estimate of solution of equation with the fractal Laplace operator in the main part. News of the Kabardin-Balkar scientific center of RAS, no. 2 (2016), pp. 21-24. http://geodesic.mathdoc.fr/item/IZKAB_2016_2_a3/

[1] A. M. Nakhushev, Uravneniya matematicheskoi biologii, Vysshaya shkola, M., 1995, 301 pp.

[2] A. V. Pskhu, Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005, 199 pp.

[3] O. Kh. Masaeva, “Apriornaya otsenka dlya uravneniya s fraktalnym operatorom Laplasa v glavnoi chasti”, Dokl. Adyg. (Cherkes.) Mezhdunar. akademii nauk, 11:1 (2009), 36–37

[4] O. Kh. Masaeva, “Zadacha Dirikhle dlya obobschennogo uravneniya Laplasa s proizvodnoi Kaputo”, Differents. uravneniya, 48:3 (2012), 442–446 | MR | Zbl

[5] O. Kh. Masaeva, “Kraevaya zadacha tipa Neimana dlya uravneniya s fraktalnym operatorom Laplasa v glavnoi chasti”, Dokl. Adyg. (Cherkes.) Mezhdunar. akad. nauk, 15:2 (2013), 54–56

[6] O. Kh. Masaeva, “Printsip ekstremuma dlya fraktalnogo ellipticheskogo uravneniya”, Dokl. Adyg. (Cherkes.) Mezhdunar. akad. nauk, 16:4 (2014), 31–35

[7] O. Kh. Masaeva, “Edinstvennost resheniya zadachi Dirikhle dlya uravneniya s fraktalnym operatorom Laplasa v glavnoi chasti”, Izvestiya KBNTs RAN, 2:6 (68) (2015), 127–130

[8] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.

[9] V. I. Smirnov, Kurs vysshei matematiki, v. II, Fizmatlit, M., 1961, 630 pp. | MR