Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IZKAB_2016_1_a5, author = {A. A. Temirov}, title = {Concept of two-level cellular-automaton predictive model}, journal = {News of the Kabardin-Balkar scientific center of RAS}, pages = {42--48}, publisher = {mathdoc}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IZKAB_2016_1_a5/} }
A. A. Temirov. Concept of two-level cellular-automaton predictive model. News of the Kabardin-Balkar scientific center of RAS, no. 1 (2016), pp. 42-48. http://geodesic.mathdoc.fr/item/IZKAB_2016_1_a5/
[1] A. E. Altunin, M. V. Semukhin, Modeli i algoritmy prinyatiya reshenii v nechetkikh usloviyakh, Izd-vo TyumGU, Tyumen, 2000, 352 pp.
[2] T. V. Anderson, Statisticheskii analiz vremennykh ryadov, Mir, M., 1976, 756 pp.
[3] A. N. Zhirabok, “Nechetkie mnozhestva i ikh ispolzovanie dlya prinyatiya reshenii”, Sorovskii obrazovatelnyi zhurnal, 7:2 (2001), 109–115 | MR | Zbl
[4] SP. Kurdyumov, G. G. Malinetskii, A. B. Potapov, “Nestatsionarnye struktury, dinamicheskii khaos, kletochnye avtomaty”, V kn. Novoe v sinergetike. Zagadki mira neravnovesnykh struktur, Seriya «Kibernetika: neogranichennye vozmozhnosti i vozmozhnye ogranicheniya», Nauka, M., 1996, 95–164
[5] Dzh. Neiman, Mir, M., 1971, 378 pp.
[6] V. A. Perepelitsa, F. B. Tebueva, L. G. Temirova, Strukturirovanie dannykh metodami nelineinoi dinamiki dlya dvukhurovnevogo modelirovaniya, Stavropolskoe knizhnoe izdatelstvo, 2006, 284 pp.
[7] E. Peters, Khaos i poryadok na rynkakh kapitala. Novyi analiticheskii vzglyad na tsikly, tseny i izmenchivost rynka, Mir, M., 2000, 333 pp.
[8] V. P. Romanov, Intellektualnye informatsionnye sistemy v ekonomike, uchebnoe posobie, 2-e izd., stereotip., eds. pod red. d.e. n., prof. N.P. Tikhomirova, Izdatelstvo «Ekzamen», M., 2007, 496 pp.
[9] L. N. Sergeeva, Modelirovanie povedeniya ekonomicheskikh sistem metodami nelineinoi dinamiki (teorii khaosa), ZGU, Zaporozhe, 2002, 277 pp.