Concept of two-level cellular-automaton predictive model
News of the Kabardin-Balkar scientific center of RAS, no. 1 (2016), pp. 42-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

The second part of the article is devoted to the top-level algorithm models. Modeling of cellular automaton structure and forecasting are realized on the upper level. The genetic algorithm which determines the interaction of cells with all the nearest neighbors is proposed for learning linear cellular automaton. The mathematical apparatus of the theory of fuzzy sets is adequately involved in the article. Each stage of two-level cellular automaton predictive model is accompanied by a brief overview of the developed algorithms.
Keywords: nonlinear dynamics, time series, forecasting, chaos theory, fuzzy set, cellular automata, fractal properties, genetic algorithms.
@article{IZKAB_2016_1_a5,
     author = {A. A. Temirov},
     title = {Concept of two-level cellular-automaton predictive model},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {42--48},
     publisher = {mathdoc},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2016_1_a5/}
}
TY  - JOUR
AU  - A. A. Temirov
TI  - Concept of two-level cellular-automaton predictive model
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2016
SP  - 42
EP  - 48
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2016_1_a5/
LA  - ru
ID  - IZKAB_2016_1_a5
ER  - 
%0 Journal Article
%A A. A. Temirov
%T Concept of two-level cellular-automaton predictive model
%J News of the Kabardin-Balkar scientific center of RAS
%D 2016
%P 42-48
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2016_1_a5/
%G ru
%F IZKAB_2016_1_a5
A. A. Temirov. Concept of two-level cellular-automaton predictive model. News of the Kabardin-Balkar scientific center of RAS, no. 1 (2016), pp. 42-48. http://geodesic.mathdoc.fr/item/IZKAB_2016_1_a5/

[1] A. E. Altunin, M. V. Semukhin, Modeli i algoritmy prinyatiya reshenii v nechetkikh usloviyakh, Izd-vo TyumGU, Tyumen, 2000, 352 pp.

[2] T. V. Anderson, Statisticheskii analiz vremennykh ryadov, Mir, M., 1976, 756 pp.

[3] A. N. Zhirabok, “Nechetkie mnozhestva i ikh ispolzovanie dlya prinyatiya reshenii”, Sorovskii obrazovatelnyi zhurnal, 7:2 (2001), 109–115 | MR | Zbl

[4] SP. Kurdyumov, G. G. Malinetskii, A. B. Potapov, “Nestatsionarnye struktury, dinamicheskii khaos, kletochnye avtomaty”, V kn. Novoe v sinergetike. Zagadki mira neravnovesnykh struktur, Seriya «Kibernetika: neogranichennye vozmozhnosti i vozmozhnye ogranicheniya», Nauka, M., 1996, 95–164

[5] Dzh. Neiman, Mir, M., 1971, 378 pp.

[6] V. A. Perepelitsa, F. B. Tebueva, L. G. Temirova, Strukturirovanie dannykh metodami nelineinoi dinamiki dlya dvukhurovnevogo modelirovaniya, Stavropolskoe knizhnoe izdatelstvo, 2006, 284 pp.

[7] E. Peters, Khaos i poryadok na rynkakh kapitala. Novyi analiticheskii vzglyad na tsikly, tseny i izmenchivost rynka, Mir, M., 2000, 333 pp.

[8] V. P. Romanov, Intellektualnye informatsionnye sistemy v ekonomike, uchebnoe posobie, 2-e izd., stereotip., eds. pod red. d.e. n., prof. N.P. Tikhomirova, Izdatelstvo «Ekzamen», M., 2007, 496 pp.

[9] L. N. Sergeeva, Modelirovanie povedeniya ekonomicheskikh sistem metodami nelineinoi dinamiki (teorii khaosa), ZGU, Zaporozhe, 2002, 277 pp.