Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IZKAB_2015_6-2_a31, author = {F. G. Khushtova}, title = {The fundamental solution of a degenerate parabolic equation with {Riemann-Liouville} operator}, journal = {News of the Kabardin-Balkar scientific center of RAS}, pages = {207--212}, publisher = {mathdoc}, number = {6-2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IZKAB_2015_6-2_a31/} }
TY - JOUR AU - F. G. Khushtova TI - The fundamental solution of a degenerate parabolic equation with Riemann-Liouville operator JO - News of the Kabardin-Balkar scientific center of RAS PY - 2015 SP - 207 EP - 212 IS - 6-2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IZKAB_2015_6-2_a31/ LA - ru ID - IZKAB_2015_6-2_a31 ER -
%0 Journal Article %A F. G. Khushtova %T The fundamental solution of a degenerate parabolic equation with Riemann-Liouville operator %J News of the Kabardin-Balkar scientific center of RAS %D 2015 %P 207-212 %N 6-2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IZKAB_2015_6-2_a31/ %G ru %F IZKAB_2015_6-2_a31
F. G. Khushtova. The fundamental solution of a degenerate parabolic equation with Riemann-Liouville operator. News of the Kabardin-Balkar scientific center of RAS, no. 6-2 (2015), pp. 207-212. http://geodesic.mathdoc.fr/item/IZKAB_2015_6-2_a31/
[1] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie, Fizmatlit., M., 2003, 272 pp.
[2] A. V. Pskhu, Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka., M., 2005, 199 pp.
[3] M. Giona, H. E. Roman, “Fractional diffusion equation on fractals: one-dimensional case and asymptotic behavior”, Physica A: Math. Gen., 25 (1992), 2093–2105
[4] R. Metzler, W. G. Gl?ckle, T. F. Nonnenmacher, “Fractional model equation for anomalous diffusion”, Physica A, 211 (1994), 13–24
[5] R. Metzler, J. Klafter, “The random walk's guide to anomalous diffusion: a fractional dynamics approach”, Physics Reports., 339 (2000), 1–77
[6] R. Metzler, J. Klafter, “The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics”, Physica A: Math. Gen., 37 (2004), 161-208
[7] R. Gorenflo, Y. Luchko, F. Mainardi, “Analytical properties and applications of the Wright function”, Frac. Calc. Appl. Anal., 2:4 (1999), 383–414
[8] D. S. Kuznetsov, Spetsialnye funktsii, Vysshaya shkola., M., 1965, 248 pp.