The fundamental solution of a degenerate parabolic equation with Riemann-Liouville operator
News of the Kabardin-Balkar scientific center of RAS, no. 6-2 (2015), pp. 207-212.

Voir la notice de l'article provenant de la source Math-Net.Ru

Properties of fundamental solution of the degenerate parabolic equation with Riemann-Liouville operator are investigated. A general representation of solution of the equation in a rectangular area is constructed.
Keywords: fundamental solution, degenerate equation, Riemann-Liouville operator.
Mots-clés : parabolic equation
@article{IZKAB_2015_6-2_a31,
     author = {F. G. Khushtova},
     title = {The fundamental solution of a degenerate parabolic equation with {Riemann-Liouville} operator},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {207--212},
     publisher = {mathdoc},
     number = {6-2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2015_6-2_a31/}
}
TY  - JOUR
AU  - F. G. Khushtova
TI  - The fundamental solution of a degenerate parabolic equation with Riemann-Liouville operator
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2015
SP  - 207
EP  - 212
IS  - 6-2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2015_6-2_a31/
LA  - ru
ID  - IZKAB_2015_6-2_a31
ER  - 
%0 Journal Article
%A F. G. Khushtova
%T The fundamental solution of a degenerate parabolic equation with Riemann-Liouville operator
%J News of the Kabardin-Balkar scientific center of RAS
%D 2015
%P 207-212
%N 6-2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2015_6-2_a31/
%G ru
%F IZKAB_2015_6-2_a31
F. G. Khushtova. The fundamental solution of a degenerate parabolic equation with Riemann-Liouville operator. News of the Kabardin-Balkar scientific center of RAS, no. 6-2 (2015), pp. 207-212. http://geodesic.mathdoc.fr/item/IZKAB_2015_6-2_a31/

[1] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie, Fizmatlit., M., 2003, 272 pp.

[2] A. V. Pskhu, Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka., M., 2005, 199 pp.

[3] M. Giona, H. E. Roman, “Fractional diffusion equation on fractals: one-dimensional case and asymptotic behavior”, Physica A: Math. Gen., 25 (1992), 2093–2105

[4] R. Metzler, W. G. Gl?ckle, T. F. Nonnenmacher, “Fractional model equation for anomalous diffusion”, Physica A, 211 (1994), 13–24

[5] R. Metzler, J. Klafter, “The random walk's guide to anomalous diffusion: a fractional dynamics approach”, Physics Reports., 339 (2000), 1–77

[6] R. Metzler, J. Klafter, “The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics”, Physica A: Math. Gen., 37 (2004), 161-208

[7] R. Gorenflo, Y. Luchko, F. Mainardi, “Analytical properties and applications of the Wright function”, Frac. Calc. Appl. Anal., 2:4 (1999), 383–414

[8] D. S. Kuznetsov, Spetsialnye funktsii, Vysshaya shkola., M., 1965, 248 pp.