Concept of two-level
News of the Kabardin-Balkar scientific center of RAS, no. 6-2 (2015), pp. 183-191.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article deals with the relevance of the research topic, which is included in the fundamental problems of the development of economic-mathematical modeling methods for time series, which also have fractal properties. Two-level approach to the prediction of fractal time series based on cellular automata is proposed. In the first part of the article a realization of algorithms which implement pre-forecasting analysis based on two instruments: a classical statistical analysis from the linear paradigm and fractal analysis relating to nonlinear dynamics methods is presented.
Keywords: nonlinear dynamics, time series, forecasting, chaos theory, fuzzy set, cellular automata, fractal properties, genetic algorithms.
@article{IZKAB_2015_6-2_a28,
     author = {A. A. Temirov},
     title = {Concept of two-level},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {183--191},
     publisher = {mathdoc},
     number = {6-2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2015_6-2_a28/}
}
TY  - JOUR
AU  - A. A. Temirov
TI  - Concept of two-level
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2015
SP  - 183
EP  - 191
IS  - 6-2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2015_6-2_a28/
LA  - ru
ID  - IZKAB_2015_6-2_a28
ER  - 
%0 Journal Article
%A A. A. Temirov
%T Concept of two-level
%J News of the Kabardin-Balkar scientific center of RAS
%D 2015
%P 183-191
%N 6-2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2015_6-2_a28/
%G ru
%F IZKAB_2015_6-2_a28
A. A. Temirov. Concept of two-level. News of the Kabardin-Balkar scientific center of RAS, no. 6-2 (2015), pp. 183-191. http://geodesic.mathdoc.fr/item/IZKAB_2015_6-2_a28/

[1] A. E. Altunin, M. V. Semukhin, Modeli i algoritmy prinyatiya reshenii v nechetkikh usloviyakh, Izd-vo TyumGU, Tyumen, 2000, 352 pp.

[2] T. V. Anderson, Statisticheskii analiz vremennykh ryadov, Mir, M, 1976, 756 pp.

[3] A. N. Zhirabok, “Nechetkie mnozhestva i ikh ispolzovanie dlya prinyatiya reshenii”, Sorovskii obrazovatelnyi zhurnal, 7:2 (2001), 109–115

[4] SP. Kurdyumov, G. G. Malinetskii, A. B. Potapov, “Nestatsionarnye struktury, dinamicheskii khaos, kletochnye avtomaty”, V kn. Novoe v sinergetike. Zagadki mira neravnovesnykh struktur, Seriya «Kibernetika: neogranichennye vozmozhnosti i vozmozhnye ogranicheniya», Nauka, M., 1996, 95–164

[5] “Neiman Dzh”, Teoriya samoproizvodyaschikhsya avtomatov, 378 (1971), Mir., M.

[6] V. A. Perepelitsa, F. B. Tebueva, L. G. Temirova, Strukturirovanie dannykh metodami nelineinoi dinamiki dlya dvukhurovnevogo modelirovaniya, Stavropolskoe knizhnoe izdatelstvo, Stavropol, 2006, 284 pp.

[7] E. Peters, Khaos i poryadok na rynkakh kapitala. Novyi analiticheskii vzglyad na tsikly, tseny i izmenchivost rynka, Mir, M., 2000, 333 pp.

[8] V. P. Romanov, Intellektualnye informatsionnye sistemy v ekonomike, uchebnoe posobie, 2-e izd., stereotip, eds. red. d.e. n. pod, prof. N.P. Tikhomirova, Izdatelstvo «Ekzamen», M., 2007, 496 pp.

[9] L. N. Sergeeva, Modelirovanie povedeniya ekonomicheskikh sistem metodami nelineinoi dinamiki (teorii khaosa), ZGU, Zaporozhe, 2002, 277 pp.