Multi-agent genetic algorithm for solving knowledge extraction problem
News of the Kabardin-Balkar scientific center of RAS, no. 6-2 (2015), pp. 12-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with one of the tasks of data intellectual analysis - the task of knowledge extraction. The urgency of solving this problem is caused by the absence of formal models of the facilities and the need for a priori knowledge of the incoming data. To solve these problems neural network technology, methods of evolutionary modeling, genetic and other population algorithms are used. The article describes the advantages of using such methods, and the ways to enhance their effectiveness are proposed. A research of software environment, which implements proposed multi-agent approach was developed, and series of computational experiments were performed.
Keywords: knowledge extraction, multi-agent system, neural network, genetic algorithm.
@article{IZKAB_2015_6-2_a1,
     author = {M. I. Anchekov and Yu. Kh. Khamukov and O. V. Nagoeva and D. Y. Zaporozhets and A. A. Lezhebokov},
     title = {Multi-agent genetic algorithm for solving knowledge extraction problem},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {12--19},
     publisher = {mathdoc},
     number = {6-2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2015_6-2_a1/}
}
TY  - JOUR
AU  - M. I. Anchekov
AU  - Yu. Kh. Khamukov
AU  - O. V. Nagoeva
AU  - D. Y. Zaporozhets
AU  - A. A. Lezhebokov
TI  - Multi-agent genetic algorithm for solving knowledge extraction problem
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2015
SP  - 12
EP  - 19
IS  - 6-2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2015_6-2_a1/
LA  - ru
ID  - IZKAB_2015_6-2_a1
ER  - 
%0 Journal Article
%A M. I. Anchekov
%A Yu. Kh. Khamukov
%A O. V. Nagoeva
%A D. Y. Zaporozhets
%A A. A. Lezhebokov
%T Multi-agent genetic algorithm for solving knowledge extraction problem
%J News of the Kabardin-Balkar scientific center of RAS
%D 2015
%P 12-19
%N 6-2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2015_6-2_a1/
%G ru
%F IZKAB_2015_6-2_a1
M. I. Anchekov; Yu. Kh. Khamukov; O. V. Nagoeva; D. Y. Zaporozhets; A. A. Lezhebokov. Multi-agent genetic algorithm for solving knowledge extraction problem. News of the Kabardin-Balkar scientific center of RAS, no. 6-2 (2015), pp. 12-19. http://geodesic.mathdoc.fr/item/IZKAB_2015_6-2_a1/

[1] Y. A. Kravchenko, “The method of efficiency evaluating knowledge intensive multi-agent systems”, Proceedings of the Congress on intelligent systems and information technologies “AIS-IT'10”, Scientific publication in 4 volumes, v. 4, Physmathlit, Moscow, 2010, 71

[2] A. I. Bashmakov, I. A. Bashmakov, Intellektualnye informatsionnye tekhnologii, M, Izd-vo MGTU im. N.E. Baumana., 2005

[3] D. Yu. Zaporozhets, Yu. A. Kravchenko, A. A. Lezhebokov, “Sposoby intellektualnogo analiza dannykh v slozhnykh sistemakh”, Izvestiya Kabardino-Balkarskogo nauchnogo tsentra RAN, 2013, no. 3, 52

[4] V. V. Bova, L. A. Gladkov, D. Yu. Zaporozhets, Yu. A. Kravchenko, V. V. Kureichik, A. A. Lezhebokov, V. V. Markov, E. V. Nuzhnov, E. I. Rogozov, A. S. Sviridov, S. N. Scheglov, “Izvlechenie znanii na osnove integrirovannykh nechetkikh adaptivnykh i bionicheskikh metodov”, Taganrog, 2013

[5] V. Gorodetsky, V. Samoylov, D. Trotsky, S. Serebryakov, “KNOWLEDGE-BASED BEHAVIOR SPECIFICATION”, Proceedings of the 2012 WI-IAT, IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology Workshops, 2012, 49–53

[6] V. I. Gorodetskii, “Sostoyanie i perspektivy intellektualnogo analiza bolshikh dannykh”, Materialy plenarnogo zasedaniya 7-i Rossiiskoi multikonferentsii po problemam upravleniya, OAO Kontsern «TsNII-Elektropribor», Sankt-Peterburg, 2014, 61–73

[7] Yu. A. Kravchenko, “Tekhnologiya analiza nadezhnosti adaptivnykh informatsionnykh sred”, Izvestiya YuFU. Tekhnicheskie nauki. Tematicheskii vypusk «Intellektualnye SAPR», 2010, no. 12 (113), 103–108, Izd-vo TTI YuFU, Taganrog

[8] V. V. Kureichik, V. M. Kureichik, L. A. Gladkov, Geneticheskie algoritmy, FIZMATLIT., M., 2010, 368 pp.

[9] H. Holland John, Adaptation in natural an artificial systems, The MIT Press edition,, Massachusetts, London, England, 1992

[10] V. M. Kureichik, L. A. Gladkov, V. V. Kureichik, P. V. Sorokoletov, Bioinspirirovannye metody v optimizatsii, FIZMATLIT., M., 2009, 384 pp.

[11] V. V. Kureichik, V. M. Kureichik, S. I. Rodzin, “Intellektualnye sistemy”, Perspektivnye napravleniya issledovanii evolyutsionnykh vychislenii, Kollektivnaya monografiya, v. 4, eds. Pod red. V.M. Kureichika, Fizmatlit, M., 2010, 30–63

[12] A. A. Novikov, M. I. Anchekov, V. V. Bova, O. V. Nagoeva, I. A. Pshenokova, “Evolyutsionnyi podkhod k sozdaniyu neirosetevoi modeli kollektivnogo resheniya intellektualnykh zadach”, Izvestiya Kabardino-Balkarskogo nauchnogo tsentra RAN, 2015, no. 5 (67), 24–30