On the thermal physical properties of the bulk
News of the Kabardin-Balkar scientific center of RAS, no. 6-1 (2015), pp. 28-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

Within the framework of the Debye model the fractal structure of the bulk solid layer is analyzed. Changing the fractal dimension can be associated with structural relaxation and do not always correspond to phase transitions. At high temperatures the fractal dimension is constant, while at low temperatures it may be set depending on the external conditions (at a given temperature and pressure). We derive expressions for the isochoric heat capacity, taking into account the temperature dependence of the fractal dimension and the generalized equation of state.
Keywords: fractals, temperature dependence of the parameters, isochoric heat capacity, equation of state.
Mots-clés : fractal dimension, phonons
@article{IZKAB_2015_6-1_a2,
     author = {S.Sh. Rekhviashvili and Kh. M. Senov},
     title = {On the thermal physical properties of the bulk},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {28--34},
     publisher = {mathdoc},
     number = {6-1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2015_6-1_a2/}
}
TY  - JOUR
AU  - S.Sh. Rekhviashvili
AU  - Kh. M. Senov
TI  - On the thermal physical properties of the bulk
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2015
SP  - 28
EP  - 34
IS  - 6-1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2015_6-1_a2/
LA  - ru
ID  - IZKAB_2015_6-1_a2
ER  - 
%0 Journal Article
%A S.Sh. Rekhviashvili
%A Kh. M. Senov
%T On the thermal physical properties of the bulk
%J News of the Kabardin-Balkar scientific center of RAS
%D 2015
%P 28-34
%N 6-1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2015_6-1_a2/
%G ru
%F IZKAB_2015_6-1_a2
S.Sh. Rekhviashvili; Kh. M. Senov. On the thermal physical properties of the bulk. News of the Kabardin-Balkar scientific center of RAS, no. 6-1 (2015), pp. 28-34. http://geodesic.mathdoc.fr/item/IZKAB_2015_6-1_a2/

[1] Yu. K. Godovskii, Teplofizicheskie metody issledovaniya polimerov, Khimiya., M., 1976, 216 pp.

[2] N. B. Brandt, S. M. Chudinov, Elektrony i fonony v metallakh, Izd-vo MGU., M., 1990, 335 pp.

[3] V. V. Zosimov, L. M. Lyamshev, “Fraktaly v volnovykh protsessakh”, UFN, 165:4 (1995), 361–401

[4] L. M. Zelenyi, A. V. Milovanov, “Fraktalnaya topologiya i strannaya kinetika: ot teorii perkolyatsii k problemam kosmicheskoi elektrodinamiki”, UFN, 174:8 (2004), 809–852

[5] I. N. Aliev, S. V. Reznik, S. O. Yurchenko, “O fraktonnoi modeli teplovykh svoistv nanostruktur”, Vestnik MGTU im. N.E.Baumana., Ser. Estestvennye nauki, no. 4, 2008, 54–61

[6] A. A. Tager, Fiziko-khimiya polimerov, Khimiya., M., 1968, 536 pp.

[7] G. M. Bartenev, S. Ya. Frenkel, Fizika polimerov, Khimiya., L., 1990, 432 pp.

[8] S. Sh. Rekhviashvili, “K voprosu o teploemkosti nanokristallicheskikh veschestv”, Pisma v ZhTF, 30:22 (2004), 65–69

[9] S. Sh. Rekhviashvili, E. V. Kishtikova, “O temperature plavleniya nanochastits i nanostrukturnykh veschestv”, Pisma v ZhTF, 32:10 (2006), 50–55

[10] S. Sh. Rekhviashvili, “Teploemkost tverdykh tel fraktalnoi struktury s uchetom angarmonizma kolebanii atomov”, ZhTF, 78:12 (2008), 54–58

[11] L. D. Landau, “K teorii fazovykh perekhodov”, ZhETF, 7:5 (1937), 627–632

[12] I. Prigozhin, R. Defei, Khimicheskaya termodinamika, Nauka., Novosibirsk, 1966, 502 pp.