Conceptual questions of economic-mathematical
News of the Kabardin-Balkar scientific center of RAS, no. 1 (2015), pp. 32-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

Conceptual questions of economic-mathematical modeling of social and economic system of the region are considered. For the description of region’s economic system development the algorithm of nonlinear logic of theory of accidents is offered. Requirements to qualitative and structural properties of mathematical model of system are described.
Keywords: social and economic system of the region, modeling, theory of accidents, nonlinear logic, qualitative and structural properties, interactions of subsystems, classification of interactions’ intensity.
@article{IZKAB_2015_1_a3,
     author = {Kh. Kh. Kalazhokov},
     title = {Conceptual questions of economic-mathematical},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {32--41},
     publisher = {mathdoc},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2015_1_a3/}
}
TY  - JOUR
AU  - Kh. Kh. Kalazhokov
TI  - Conceptual questions of economic-mathematical
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2015
SP  - 32
EP  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2015_1_a3/
LA  - ru
ID  - IZKAB_2015_1_a3
ER  - 
%0 Journal Article
%A Kh. Kh. Kalazhokov
%T Conceptual questions of economic-mathematical
%J News of the Kabardin-Balkar scientific center of RAS
%D 2015
%P 32-41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2015_1_a3/
%G ru
%F IZKAB_2015_1_a3
Kh. Kh. Kalazhokov. Conceptual questions of economic-mathematical. News of the Kabardin-Balkar scientific center of RAS, no. 1 (2015), pp. 32-41. http://geodesic.mathdoc.fr/item/IZKAB_2015_1_a3/

[1] Kh. Kh. Kalazhokov, B. A. Ashabokov, “K teorii uravnenii sotsialno-ekonomicheskoi dinamiki”, Izvestiya KBNTs RAN, 2001, no. 1 (6)

[2] V. N. Arnold, Teoriya katastrof, Nauka, M., 1990

[3] E. A. Barabashin, Vvedenie v teoriyu ustoichivosti, Nauka, M., 1967

[4] S. Lefshets, Geometricheskaya teoriya differentsialnykh uravnenii, Izdatelstvo IL., M., 1961

[5] V. L. Makarov, “Ekonomicheskoe ravnovesie: suschestvovanie i ekstremalnye svoistva”, Itogi nauki i tekhniki (sovremennye problemy matematiki), 19 (1982), VINITI., M.

[6] V. L. Makarov, A. M. Rubinov, Matematicheskaya teoriya ekonomicheskoi dinamiki i ravnovesiya, Nauka., M., 1973

[7] A. G. Rubinshtein, Modelirovanie ekonomicheskikh vzaimodeistvii v territorialnykh sistemakh, Nauka., Novosibirsk, 1983

[8] R. Bellman, Matematicheskie metody v meditsine, Mir., M., 1987

[9] Kh. Kh. Kalazhokov, “Adaptivnyi metod modelirovaniya dinamiki rynkov”, Izvestiya KBNTs RAN, 2008, no. 5 (25)

[10] B. L. Kuchin, S. V. Kudryavtseva, “Prognozirovanie razvitiya slozhnykh makroekonomicheskikh struktur, nakhodyaschikhsya pod vozdeistviem nauchno-tekhnicheskogo progressa”, V sb : Prikladnye problemy upravleniya makrosistemami:, Trudy III vsesoyuznoi shkoly «Vsesoyuznyi nauchno-issledovatelskii institut sistemnykh issledovanii», M., 1990, 77–85

[11] V. V. Druzhinin, D. S. Kontorov, M. D. Kontorov, Vvedenie v teoriyu konflikta, Radio i svyaz., M., 1989