Modeling and forecasting of temporary ranks' dynamics (part~I)
News of the Kabardin-Balkar scientific center of RAS, no. 5 (2014), pp. 7-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

Various methods of modeling and forecasting of temporary ranks in economy depending on volume and structure of statistical information entrance are considered. New results on trend and approximation optimization with smoothing of temporary ranks are presented. Methods of the effective solution of approximation problems by means of cubic spline functions are offered.
Keywords: modeling, forecasting, temporary ranks, trend, optimization, approximation, spline functions, correlation.
Mots-clés : Fourier's transformation, convolution
@article{IZKAB_2014_5_a0,
     author = {Kh. Kh. Kalazhokov},
     title = {Modeling and forecasting of temporary ranks' dynamics {(part~I)}},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {7--16},
     publisher = {mathdoc},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2014_5_a0/}
}
TY  - JOUR
AU  - Kh. Kh. Kalazhokov
TI  - Modeling and forecasting of temporary ranks' dynamics (part~I)
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2014
SP  - 7
EP  - 16
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2014_5_a0/
LA  - ru
ID  - IZKAB_2014_5_a0
ER  - 
%0 Journal Article
%A Kh. Kh. Kalazhokov
%T Modeling and forecasting of temporary ranks' dynamics (part~I)
%J News of the Kabardin-Balkar scientific center of RAS
%D 2014
%P 7-16
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2014_5_a0/
%G ru
%F IZKAB_2014_5_a0
Kh. Kh. Kalazhokov. Modeling and forecasting of temporary ranks' dynamics (part~I). News of the Kabardin-Balkar scientific center of RAS, no. 5 (2014), pp. 7-16. http://geodesic.mathdoc.fr/item/IZKAB_2014_5_a0/

[1] E. Malenvo, Statisticheskie metody ekonometrii, Statistika, M., 1976

[2] P. Dzhonson, F. Lion, “Statistika i planirovanie eksperimenta v tekhnike i nauke”, Metody planirovaniya eksperimenta, 1980, Mir, M.

[3] K. Grendzher, M. Khatanaka, Spektralnyi analiz vremennykh ryadov v ekonomike, Statistika, M., 1972

[4] Dzh. Boks, G. Dzhenkins, “Analiz vremennykh ryadov”, Prognoz i upravlenie, 1974, Mir., M.

[5] P. Eikoff, A. Vanechek, E. Savaragi, T. Soeda, T. Nakamizo, Kh. Akaike, N. Raibman, V. Peterka, Sovremennye metody identifikatsii sistem, Perevod s angl., eds. pod red. P. Eikkhoffa, Mir, M., 1983, 400 pp.

[6] S. A. Redkozubov, Statisticheskie metody prognozirovaniya v ASU, Energoizdatelstvo, M., 1981

[7] A. N. Tikhonov, V. Ya. Arsenin, Metody resheniya nekorrektnykh zadach, Nauka, M., 1974

[8] A. A. Dmitriev, Ortogonalnye eksponentsialnye funktsii v gidrometeorologii, Gidrometeoizdat, Leningrad, 1973

[9] G. I. Marchuk, Metody vychislitelnoi matematiki, Nauka, M., 1977

[10] D-ch G., Rukovodstvo k prakticheskomu primeneniyu preobrazovaniya Laplasa i Z-preobrazovaniya, Nauka, M., 1971

[11] A. N. Kolmogorov, “Interpolirovanie i ekstrapolyatsiya statsionarnykh posledovatelnostei”, Izv. AN SSSR. Ceriya matematicheskaya, 5:1 (1941), 42–81

[12] A. M. Yaglom, “Vvedenie v teoriyu statsionarnykh sluchainykh funktsii”, UMN, VII:5 (1952), 3–165

[13] Yu. A. Rozanov, Teoriya obnovlyayuschikh protsessov, Nauka., M., 1974, 128 pp.

[14] V. S. Pugachev, Teoriya sluchainykh funktsii, Fizmatgiz, M., 1962, 276 pp.

[15] N. Wiener, Extrapolation interpolation and smoothing of stationary time series, John Wiley, N.Y., 1949, 418 pp. | Zbl

[16] R. E. Kalman, R. S. Bucy, “New results in linear filtering and predication theory”, J. of Basic End. Trans. ASME, 1960, no. 60, 51–91

[17] R. G. Brown, Smoothing forecasting and prediction of discrete time series, Prentice Hall, N.Y, 1963, 468 pp.

[18] R. G. Brown, R. F. Meyer, “The fundamental theorem of exponential smoothing”, Oper. Res, 1961

[19] Yu. P. Lukashin, Adaptivnye metody kratkosrochnogo prognozirovaniya, Statistika, M., 1979, 251 pp.