Multi-level algorithms for solving problems
News of the Kabardin-Balkar scientific center of RAS, no. 4 (2013), pp. 21-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

Parametric optimization tasks are currently being used in various application areas. These tasks may include weather forecasting on meteo station, the calculation of the parameters of electric motors, search of weights coefficients in the neural network. This paper presents a hybrid bionic algorithm for solving the problems of parametric optimization. Also, it describes a series of experiments, which were confirmed by theoretical estimates, that identified the optimal parameters of the algorithm. The time complexity of the algorithm was $O(n^4)$, the value of the time offset, the quality of the solutions obtained via hybrid heuristics for a large number of input parameters are presented. Thus, in the course of the experiments, the number of input parameters for 100 or more a hybrid algorithm never got into a local optimum, and the solution found was approached or equal to the global.
Keywords: bio-inspired algorithm, multi-level algorithm, the ant algorithm, parameter optimization, neural network.
@article{IZKAB_2013_4_a2,
     author = {D. Y. Zaporozhets and A. Y. Kudaev and A. A. Lezhebokov},
     title = {Multi-level algorithms for solving problems},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {21--28},
     publisher = {mathdoc},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2013_4_a2/}
}
TY  - JOUR
AU  - D. Y. Zaporozhets
AU  - A. Y. Kudaev
AU  - A. A. Lezhebokov
TI  - Multi-level algorithms for solving problems
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2013
SP  - 21
EP  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2013_4_a2/
LA  - ru
ID  - IZKAB_2013_4_a2
ER  - 
%0 Journal Article
%A D. Y. Zaporozhets
%A A. Y. Kudaev
%A A. A. Lezhebokov
%T Multi-level algorithms for solving problems
%J News of the Kabardin-Balkar scientific center of RAS
%D 2013
%P 21-28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2013_4_a2/
%G ru
%F IZKAB_2013_4_a2
D. Y. Zaporozhets; A. Y. Kudaev; A. A. Lezhebokov. Multi-level algorithms for solving problems. News of the Kabardin-Balkar scientific center of RAS, no. 4 (2013), pp. 21-28. http://geodesic.mathdoc.fr/item/IZKAB_2013_4_a2/

[1] V. M. Kureichik, L. A. Gladkov, V. V. Kureichik, V. M. Kureichik, P. V. Sorokoletov, Bioinspirirovannye metody v optimizatsii, FIZMATLIT, M., 2009, 384 pp.

[2] A. Abraham, G. Grosan, V. Ramos, Swarm Intelligence in Data Mining, Springer Verlag, Berlin–Heidelberg, 2006, 267 pp.

[3] M. Dorigo, V. Maniezzo, A. Colorni, “Ant System: Optimization by a Colony of Cooperating Agents”, IEEE Transactions on Systems, Man, and Cybernetics-Part B., 26:1 (1996), 29–41 | DOI

[4] V. V. Kureichik, D. Yu. Zaporozhets, “Roevoi algoritm v zadachakh optimizatsii”, Izvestiya Yuzhnogo federalnogo universiteta. Tekhnicheskie nauki, 108:7 (2010), 28–32

[5] V. N. Belkov, V. L. Lanshakov, Avtomatizirovannoe proektirovanie tekhnicheskikh sistem, Uchebnoe posobie, Izdatelstvo «Akademiya estestvoznaniya», M., 2009

[6] V. V. Kureichik, D. Yu. Zaporozhets, “Sovremennye problemy pri razmeschenii elementov SBIS”, Izvestiya Yuzhnogo federalnogo universiteta. Tekhnicheskie nauki, 120:7 (2011), 68–73

[7] V. M. Kureichik, Kureichik V. V., “Evolyutsionnye, sinergeticheskie i gomeostaticheskie strategii v iskusstvennom intellekte: sostoyanie i perspektivy”, Novosti iskusstvennogo intellekta, 2000, no. 3, 39–63

[8] V. V. Bova, V. V. Kureichik, “Integrirovannaya podsistema gibridnogo i kombinirovannogo poiska v zadachakh proektirovaniya i upravleniya”, Izvestiya Yuzhnogo federalnogo universiteta. Tekhnicheskie nauki, 113:12 (2010), 37–42

[9] V. V. Kureichik, V. V. Kureichik, “Arkhitektura gibridnogo poiska pri proektirovanii”, Izvestiya Yuzhnogo federalnogo universiteta. Tekhnicheskie nauki, 132:7 (2012), 22–27

[10] Yu. A. Kravchenko, “Otsenka kognitivnoi aktivnosti polzovatelya v sistemakh podderzhki prinyatiya reshenii”, Izvestiya Yuzhnogo federalnogo universiteta. Tekhnicheskie nauki, 93:4 (2009), 113–117

[11] Yu. A. Kravchenko, “Kontseptualnye osnovy refleksivno-adaptivnogo podkhoda k postroeniyu intellektualnykh informatsionnykh sistem”, Izvestiya Yuzhnogo federalnogo universiteta. Tekhnicheskie nauki, 120:7 (2011), 167–171

[12] Yu. A. Kravchenko, “Primenenie metoda analiza ierarkhii v algoritme prinyatiya reshenii s uchetom ryada parametrov adaptatsii”, Izvestiya Yuzhnogo federalnogo universiteta. Tekhnicheskie nauki, 132:7 (2012), 247–252

[13] V. V. Kureichik, S. I. Rodzin, “O pravilakh predstavleniya reshenii v evolyutsionnykh algoritmakh”, Izvestiya YuFU. Tekhnicheskie nauki, 108:7 (2010), 13–21