The method of particle in problems of continuum mechanics and heat conductivity
News of the Kabardin-Balkar scientific center of RAS, no. 3 (2012), pp. 32-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

Method of the decision problems of mechanics of deformable firm bodies and the heat conductivity, the continuous environment based on splitting by macroparticles co-operating on the set law is offered in this work. The analysis of an intense-deformed condition and heat conductivity of designs is done by a method of dynamic particles and classical model.
Keywords: method of dynamic particles, discretization methods of continuous media, heat conductivity.
Mots-clés : interaction ensemble of particles
@article{IZKAB_2012_3_a4,
     author = {M. M. Oshkhunov and Z. V. Nagoev and R. D. Makoeva},
     title = {The method of particle in problems of continuum mechanics and heat conductivity},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {32--36},
     publisher = {mathdoc},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2012_3_a4/}
}
TY  - JOUR
AU  - M. M. Oshkhunov
AU  - Z. V. Nagoev
AU  - R. D. Makoeva
TI  - The method of particle in problems of continuum mechanics and heat conductivity
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2012
SP  - 32
EP  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2012_3_a4/
LA  - ru
ID  - IZKAB_2012_3_a4
ER  - 
%0 Journal Article
%A M. M. Oshkhunov
%A Z. V. Nagoev
%A R. D. Makoeva
%T The method of particle in problems of continuum mechanics and heat conductivity
%J News of the Kabardin-Balkar scientific center of RAS
%D 2012
%P 32-36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2012_3_a4/
%G ru
%F IZKAB_2012_3_a4
M. M. Oshkhunov; Z. V. Nagoev; R. D. Makoeva. The method of particle in problems of continuum mechanics and heat conductivity. News of the Kabardin-Balkar scientific center of RAS, no. 3 (2012), pp. 32-36. http://geodesic.mathdoc.fr/item/IZKAB_2012_3_a4/

[1] A. Lyav, Matematicheskaya teoriya uprugosti, ONTI NKGiP SSSR, M.-L., 1935, 370. pp.

[2] N.I. Muskhelishvili, Nekotorye osnovnye zadachi matematicheskii teorii uprugosti (ploskaya teoriya), Nauka, M., 1975, 496 pp. | MR

[3] M. M. Oshkhunov, “O skorosti skhodimosti iteratsionnykh protsessov nelineinoi uprugosti”, Prikladnaya mekhanika, 1995, Kiev | Zbl

[4] D. A. Bykov, “O nekotorykh sootnosheniyakh mezhdu invariantami napryazhenii i deformatsii v fizicheski nelineinykh sredakh”, Uprugost i neuprugost, 1971, no. 2, MGU

[5] M. M. Oshkhunov, T. M. Botashev, R. D. Eleeva, I. A. Mamieva, “Chislennoe reshenie uravnenii metoda dinamicheskikh chastits”, Materialy tretei mezhdunarodnoi nauchno-tekhnicheskoi konferentsii , tekhnika i tekhnologiya XXI veka>, v. 2, Nalchik, 2007

[6] Yu. N. Robotnov, Mekhanika deformiruemogo tverdogo tela, Nauka, M., 1979, 744 pp.

[7] M. M. Oshkhunov, Z. V. Nagoev, “Metod diskretno-dinamicheskikh chastits v zadachakh mekhaniki deformiruemogo tverdogo tela”, Izvestiya RAN. Mekhanika tverdogo tela, 2012, no. 4

[8] R. Khokni, Dzh. Istvud, Chislennoe modelirovanie metodom chastits, M., 1987, 487 pp.

[9] A. A. Samarskii, Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971, 301–320 pp.

[10] R. V. Kheming, Chislennye metody, Nauka, M., 1972, 400 pp.

[11] I. K. Kikoin, A. K. Kikoin, Molekulyarnaya fizika, Nauka, M., 1976