The linear threshold gate with adaptive accuracy
News of the Kabardin-Balkar scientific center of RAS, no. 1 (2011), pp. 46-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

One gate corresponds to linear threshold function (LTF) arity n. The algorithm of work of the gate is based on research of the internal device of the LTF-functions inducing splitting of numerical space of scales on final number of classes, being in one to one conformity with realized logic functions. The gate it is adaptive increases weight in the form of a n-bit vector (on one bit on each argument). (1) Algorithm doesn't limit number accessible linear function. (2) Algorithm is based on prescheduled calculation of a sign. The gate is intended for use in traditional neural systems. The gate can be realized at hardware level in system of architecture FPGA.
Keywords: linear threshold function, threshold gate, hardware neuron, hardware architecture FPGA.
@article{IZKAB_2011_1_a7,
     author = {U. M. Bishenov and T. H. Tavkesheva},
     title = {The linear threshold gate with adaptive accuracy},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {46--50},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2011_1_a7/}
}
TY  - JOUR
AU  - U. M. Bishenov
AU  - T. H. Tavkesheva
TI  - The linear threshold gate with adaptive accuracy
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2011
SP  - 46
EP  - 50
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2011_1_a7/
LA  - ru
ID  - IZKAB_2011_1_a7
ER  - 
%0 Journal Article
%A U. M. Bishenov
%A T. H. Tavkesheva
%T The linear threshold gate with adaptive accuracy
%J News of the Kabardin-Balkar scientific center of RAS
%D 2011
%P 46-50
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2011_1_a7/
%G ru
%F IZKAB_2011_1_a7
U. M. Bishenov; T. H. Tavkesheva. The linear threshold gate with adaptive accuracy. News of the Kabardin-Balkar scientific center of RAS, no. 1 (2011), pp. 46-50. http://geodesic.mathdoc.fr/item/IZKAB_2011_1_a7/

[1] V. Bohossian, J. Bruck, “Neironnye seti s minimalnym vesom”, ECCC, 7 (TR96-034)

[2] K. Amano, A. Maruoka, “Luchshaya imitatsiya porogovykh vesov s pomoschyu polinomialnykh vesov”, ECCC, 8 (TR04-090)

[3] M. A. Cueto, Geometriya ogranichennoi mashiny Boltsmana, arXiv: http://arxiv.org/abs/0908.4425

[4] P. C. Ojha, O perechislenii ltf.url http://74.6.239.67/search/cache?

[5] M. Muroga, Porogovye funktsii i ikh primenenie, Wiley-Interscience, 1971

[6] C. K. Chow, “O kharakterizatsii porogovykh funktsii”, FOCS, 1961, 34–38

[7] K. Matilef, “Proverka poluprostranstv”, ECCC, 41 (TR07-128)

[8] S. Wolfram, Novyi vid nauki