Difference schemes for the equation of heat
News of the Kabardin-Balkar scientific center of RAS, no. 1 (2010), pp. 146-150
Cet article a éte moissonné depuis la source Math-Net.Ru
In this work the author presented the boundary value problem for a heat conduction equation with a fractional derivative in boundary conditions. The equation of parabolic type with variable factors and a fractional derivative on time in boundary conditions (the concept of a fractional derivative of Riemann - Liouville is used at $0<\alpha<1$) is considered. For this problem the a priori estimation is obtained from which the solution stability on input data and uniqueness follows. The discrete analogue of a problem is constructed, the approximation error is investigated, and also the stability and convergence of the difference scheme are proved.
Keywords:
boundary value problem, heat conduction equation, fractional derivative, derivative of Riemann – Liouville, the discrete analogue.
@article{IZKAB_2010_1_a1,
author = {A. B. Mambetova},
title = {Difference schemes for the equation of heat},
journal = {News of the Kabardin-Balkar scientific center of RAS},
pages = {146--150},
year = {2010},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IZKAB_2010_1_a1/}
}
A. B. Mambetova. Difference schemes for the equation of heat. News of the Kabardin-Balkar scientific center of RAS, no. 1 (2010), pp. 146-150. http://geodesic.mathdoc.fr/item/IZKAB_2010_1_a1/
[1] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR
[2] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003
[3] A. A. Samarskii, Teoriya raznostnykh skhem, Nauka., M., 1977
[4] F. I. Taukenova, M. Kh. Shkhanukov-Lafishev, “Raznostnye metody resheniya kraevykh zadach dlya differentsialnykh uravnenii drobnogo poryadka”, Vychisl. matem. i matem. fiz, 46:1 (2006), 1871–1881 | MR