Calculation of rigid characteristics of spatial element in the form of parallelepiped by dynamic particle’s method
News of the Kabardin-Balkar scientific center of RAS, no. 1 (2009), pp. 116-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is suggested in the work a method of substitution of elasticity solid parallelepiped by equivalent system of interacting particle, which has the same rigid characteristics. The formulae, which allow the value the main physical characteristics of solid deformed medium (modulus of Jung, coefficient of Poisson) through the model’s parameters, are received.
@article{IZKAB_2009_1_a0,
     author = {I. A. Mamieva and R. D. Eleeva},
     title = {Calculation of rigid characteristics of spatial element in the form of parallelepiped by dynamic particle{\textquoteright}s method},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {116--120},
     publisher = {mathdoc},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2009_1_a0/}
}
TY  - JOUR
AU  - I. A. Mamieva
AU  - R. D. Eleeva
TI  - Calculation of rigid characteristics of spatial element in the form of parallelepiped by dynamic particle’s method
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2009
SP  - 116
EP  - 120
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2009_1_a0/
LA  - ru
ID  - IZKAB_2009_1_a0
ER  - 
%0 Journal Article
%A I. A. Mamieva
%A R. D. Eleeva
%T Calculation of rigid characteristics of spatial element in the form of parallelepiped by dynamic particle’s method
%J News of the Kabardin-Balkar scientific center of RAS
%D 2009
%P 116-120
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2009_1_a0/
%G ru
%F IZKAB_2009_1_a0
I. A. Mamieva; R. D. Eleeva. Calculation of rigid characteristics of spatial element in the form of parallelepiped by dynamic particle’s method. News of the Kabardin-Balkar scientific center of RAS, no. 1 (2009), pp. 116-120. http://geodesic.mathdoc.fr/item/IZKAB_2009_1_a0/

[1] Yu. A. Amenzade, Teoriya uprugosti, Vysshaya shkola, M., 1971, 285 pp.

[2] A. Lyav, Matematicheskaya teoriya uprugosti, ONTI NKGiP SSSR, M.-L., 1935, 370 pp.

[3] V. V. Novozhilov, Teoriya uprugosti, Sudpromgiz, 1958, 230 pp.

[4] M. M. Oshkhunov, Z. V. Nagoev, “Diskretno-dinamicheskoe modelirovanie zadach teorii uprugosti”, Materialy vtoroi vserossiiskoi konferentsii «Problemy informatizatsii regionalnogo upravleniya», Nalchik, 2006, 50–55

[5] M. M. Oshkhunov, Z. V. Nagoev, I. A. Mamieva, “Molekulyarno-dinamicheskoe modelirovanie zadachi ob izgibe uprugoi balki pri razlichnykh usloviyakh zaschemleniya na krayakh”, Materialy vtoroi vserossiiskoi konferentsii «Problemy informatizatsii regionalnogo upravleniya», Nalchik, 2006, 141–145

[6] S. P. Timoshenko, Dzh. Guder, Teoriya uprugosti, Nauka, M., 1975, 576 pp.