Quasi-linear equations of mixed type
News of the Kabardin-Balkar scientific center of RAS, no. 6 (2008), pp. 134-141.

Voir la notice de l'article provenant de la source Math-Net.Ru

Non-local boundary problem for quasi-linear equation of the mixed parabolic-hyperbolic type of the second order in contacting area is studied. Uniqueness and possibility of the solution of this non-local problem by method of integral equations is proved by transformation to the linear equation. It is well known that heat transfer process in soil may by described only by mixed equation with boundary and initial conditions. The description or modeling of such a process is a very difficult problem. This work devoted to investigation of parabolic-hyperbolic equations of second order in mixed domain.
@article{IZKAB_2008_6_a0,
     author = {Kh. G. Bzhikhatlov},
     title = {Quasi-linear equations of mixed type},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {134--141},
     publisher = {mathdoc},
     number = {6},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2008_6_a0/}
}
TY  - JOUR
AU  - Kh. G. Bzhikhatlov
TI  - Quasi-linear equations of mixed type
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2008
SP  - 134
EP  - 141
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2008_6_a0/
LA  - ru
ID  - IZKAB_2008_6_a0
ER  - 
%0 Journal Article
%A Kh. G. Bzhikhatlov
%T Quasi-linear equations of mixed type
%J News of the Kabardin-Balkar scientific center of RAS
%D 2008
%P 134-141
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2008_6_a0/
%G ru
%F IZKAB_2008_6_a0
Kh. G. Bzhikhatlov. Quasi-linear equations of mixed type. News of the Kabardin-Balkar scientific center of RAS, no. 6 (2008), pp. 134-141. http://geodesic.mathdoc.fr/item/IZKAB_2008_6_a0/

[1] A. V. Bitsadze, Nekotorye klassy uravnenii v chastnykh proizvodnykh, Nauka, M., 1981, 448 pp. | MR

[2] Kh. G. Bzhikhatlov, V. A. Eleev, “O zadachakh sopryazheniya lineinykh i kvazilineinykh uravnenii s nelokalnymi kraevymi usloviyami”, Materialy II mezhdunarodnoi konferentsii «Modelirovanie ustoichivogo regionalnogo razvitiya», Nalchik, 158–164 pp.

[3] Kh. G. Bzhikhatlov, “Ob odnoi kraevoi zadache dlya smeshannykh parabolo giperbolicheskikh uravnenii s kharakteristicheskoi liniei izmeneniya tipa”, Differentsialnye uravneniya, 13:1 (1977) | MR

[4] Kh. G. Bzhikhatlov, I. M. Karasev, I. P. Leskovskii, A. M. Nakhushev, Izbrannye voprosy differentsialnykh i integralnykh uravnenii, Nalchik, 1972, 290 pp.

[5] V. A. Eleev, Differentsialnye uravneniya, 17:1 (1981) | MR

[6] I. L. Karol, “Ob odnoi kraevoi zadache dlya uravneniya smeshannogo elliptiko-giperbolicheskogo tipa”, DAN SSSR, 88:2 (1953), 197–200 | Zbl

[7] A. V. Lykov, “Effekt inertsionnosti v teplomassoobmennykh yavleniyakh”, IFZh, 3:9 (1965)

[8] N. I. Muskhelishvili, Singulyarnye integralnye uravneniya, Nauka, M., 1963, 511 pp.

[9] A. M. Nakhushev, Uravneniya matematicheskoi biologii, Vysshaya shkola, M., 1995, 304 pp.

[10] M. M. Smirnov, Uravneniya smeshannogo tipa, Vysshaya shkola, M., 1985, 303 pp.

[11] F. Trikomi, Inostr. literatura, M., 1962, 300 pp.

[12] A. F. Chudnovskii, Teplofizika pochv, Nauka, M., 1976, 352 pp.