Solving boundary problems for third-order equations
News of the Kabardin-Balkar scientific center of RAS, no. 2 (2008), pp. 147-151.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work considers two boundary problems for a third-order equation with multiple characteristics in semi-infinite strip $U_{xxx} - U_{yy} = 0$. The uniqueness of solution is proved by method of energy integral. The solutions of the problems put are constructed by method of Fourier.
@article{IZKAB_2008_2_a0,
     author = {Yu. P. Apakov},
     title = {Solving boundary problems for third-order equations},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {147--151},
     publisher = {mathdoc},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2008_2_a0/}
}
TY  - JOUR
AU  - Yu. P. Apakov
TI  - Solving boundary problems for third-order equations
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2008
SP  - 147
EP  - 151
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2008_2_a0/
LA  - ru
ID  - IZKAB_2008_2_a0
ER  - 
%0 Journal Article
%A Yu. P. Apakov
%T Solving boundary problems for third-order equations
%J News of the Kabardin-Balkar scientific center of RAS
%D 2008
%P 147-151
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2008_2_a0/
%G ru
%F IZKAB_2008_2_a0
Yu. P. Apakov. Solving boundary problems for third-order equations. News of the Kabardin-Balkar scientific center of RAS, no. 2 (2008), pp. 147-151. http://geodesic.mathdoc.fr/item/IZKAB_2008_2_a0/

[1] H. Block, “Sur les equations lineaires aux derivees partielles a carateristiques multiples”, I e II Arciv for Mat. Astr. Och Fysik. Bd 7 (1912) e (specialmente), v. 8, 1913, 3–20 pp.

[2] E. Del Vecchio, “Sulle equazioni Zxxx Zy + $\phi_1$ (x,y) = 0, Zxxx – Zyy + $\phi_2$ (x, y) = 0”, Memorie R. Accad. Sci., 2 (1915), Torino

[3] E. Del Vecchio, “Sur deux problemes d'integration pour les equations paraboliques”, Arkiv for Mat. Astr. och Fys., v. 11, 1916 (H. Block. Remarque a la note precedente)

[4] L. Cattabriga, “Potenziali di linea e di dominio per equazioni non paraboliche in due varia bili a caratteristiche multiple”, Rendiconti del seminario matimatico della univ.di Padova, v. 31, 1961, 1–45 pp. | MR

[5] S. Abdinazarov, “Ob odnom uravnenii tretego poryadka”, Izv. AN UzSSR, ser. fiz-mat. nauk, no. 6, 1989, 3–6 | MR | Zbl

[6] A. R. Khoshimov, “Ob odnoi zadache dlya uravneniya smeshannogo tipa s kratnymi kharakteristikami”, UzMZh, 1995, no. 2, 93–97

[7] Yu. Irgashev, Yu. P. Apakov, “Pervaya kraevaya zadacha dlya uravneniya tretego poryadka psevdoellipticheskogo tipa”, UzMZh, 2006, no. 2, 44–51 | MR

[8] Yu. P. Apakov, “K resheniyu kraevykh zadach dlya uravneniya Uxxx + U yy = 0 v neogranichennykh oblastyakh”, DAN RUz, 2006, no. 3, 17–20

[9] Tikhonov A.N, A. A. Samarskii, Uravneniya matematicheskoi fiziki, Nauka, M., 1977, 735 pp. | MR