Cycle length of time series estimation approach
News of the Kabardin-Balkar scientific center of RAS, no. 1 (2008), pp. 152-163.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is dedicated to time sets dynamic analysis. Method of applying usual graphic representation of time sets levels has been considered for increasing of meaning accuracy defined on the instrumental base and by fractal analysis methods of memory depth value.
@article{IZKAB_2008_1_a1,
     author = {D. F. Tambieva},
     title = {Cycle length of time series estimation approach},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {152--163},
     publisher = {mathdoc},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2008_1_a1/}
}
TY  - JOUR
AU  - D. F. Tambieva
TI  - Cycle length of time series estimation approach
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2008
SP  - 152
EP  - 163
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2008_1_a1/
LA  - ru
ID  - IZKAB_2008_1_a1
ER  - 
%0 Journal Article
%A D. F. Tambieva
%T Cycle length of time series estimation approach
%J News of the Kabardin-Balkar scientific center of RAS
%D 2008
%P 152-163
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2008_1_a1/
%G ru
%F IZKAB_2008_1_a1
D. F. Tambieva. Cycle length of time series estimation approach. News of the Kabardin-Balkar scientific center of RAS, no. 1 (2008), pp. 152-163. http://geodesic.mathdoc.fr/item/IZKAB_2008_1_a1/

[1] E. Peters, “Khaos i poryadok na rynkakh kapitala”, Novyi analiticheskii vzglyad na tsikly, tseny i izmenchivost rynka, 2000, 333, Mir, M.

[2] E. Peters, Fraktalnyi analiz finansovykh rynkov: primenenie teorii khaosa v investitsiyakh i ekonomike, Internet-treiding, M., 2004, 304 pp.

[3] V. A. Perepelitsa, D. A. Tambieva, “Fraktalnyi analiz odnogo vremennogo ryada strakhovaniya”, Izvestiya vuzov. Severo-Kavkazskii region. Estestvennye nauki, 2006, no. 2

[4] V. A. Perepelitsa, D. A. Tambieva, K. A. Komissarova, “Vizualizatsiya R / S i H-tra ektorii idealnykh vremennykh ryadov”, Nauchnaya mysl Kavkaza. Prilozhenie, 2005, no. 12, 114–122

[5] V. A. Perepelitsa, F. B. Tebueva, L. G. Temirova, Strukturirovanie dannykh metodami nelineinoi dinamiki dlya dvukhurovnevogo modelirovaniya, Stavropolskoe knizhnoe izdatelstvo, Stavropol, 2005, 284 pp.

[6] V. A. Perepelitsa, E. Kh. Popova, A. M. Yangishieva, A. D. Salpagarov, “Issledovanie me todov nelineinoi dinamiki dlya predprognoznogo analiza ob'ema stoka gornykh rek”, Ekologicheskii vestnik nauchnykh tsentrov chernomorskogo ekologicheskogo sotrudnichestva (ChES), 2005, no. 1, 73–84

[7] L. P. Yanovskii, Printsipy metodologiya i nauchnoe obosnovanie prognozov urozhaya po tekhnologii «Zont», VGAU, Voronezh, 2000, 379 pp.

[8] V. A. Perepelitsa, F. B. Tebueva, L. G. Temirova, M. D. Kasaeva, “Prognoznaya model urozhainosti na baze kletochnykh avtomatov i nechetkikh mnozhestv”, Trudy III mezhdunarod noi konferentsii «Novye tekhnologii v upravlenii, biznese i prave», izd-vo IUBiP, Nevinnomyssk, 2003, 163–167 (g. Nevinnomyssk, 30 maya 2003 g.)