Rational estimation of neural links
News of the Kabardin-Balkar scientific center of RAS, no. 2 (2006), pp. 59-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

From computational point of view Neuronal Program represents only the real number valued weighting of neural links. Conception of rational weightings based on methods of theory of information and theory of coding is inves-tigated. The authors developed the numeric coding system which may be adequately used for rational weightings of neuronal links of Neuronal Program.
Keywords: mathematical neuron, real number value, rational weighting (estimation), rational coding
Mots-clés : neuron program
@article{IZKAB_2006_2_a5,
     author = {U. M. Bishenov and A. B. Tarchokova and E. O. Nekhai and M. M. Mazanov},
     title = {Rational estimation of neural links},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {59--66},
     publisher = {mathdoc},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2006_2_a5/}
}
TY  - JOUR
AU  - U. M. Bishenov
AU  - A. B. Tarchokova
AU  - E. O. Nekhai
AU  - M. M. Mazanov
TI  - Rational estimation of neural links
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2006
SP  - 59
EP  - 66
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2006_2_a5/
LA  - ru
ID  - IZKAB_2006_2_a5
ER  - 
%0 Journal Article
%A U. M. Bishenov
%A A. B. Tarchokova
%A E. O. Nekhai
%A M. M. Mazanov
%T Rational estimation of neural links
%J News of the Kabardin-Balkar scientific center of RAS
%D 2006
%P 59-66
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2006_2_a5/
%G ru
%F IZKAB_2006_2_a5
U. M. Bishenov; A. B. Tarchokova; E. O. Nekhai; M. M. Mazanov. Rational estimation of neural links. News of the Kabardin-Balkar scientific center of RAS, no. 2 (2006), pp. 59-66. http://geodesic.mathdoc.fr/item/IZKAB_2006_2_a5/

[1] C. E. Shannon, “A Mathematical theory of communication”, Bell. System technical Journal, 27 (1948), 379–423, 623–656 | DOI | MR | Zbl

[2] D. A. Huffman, “Proc. of the IRE”, A method for the construction of minimum-redundancy codes, v. 40, 1952, 1098–1101 pp. | Zbl

[3] B. McMillan, “Two enequalities implied by unique decipherability”, IRE. Trans. IT, 2:4 (1961), 1115–1116

[4] E. N. Gilbert, E. F. Moore, “Variablelength binary encodings”, Bell System Nechnical Journal, 38:4 (1959), 933–967 | DOI | MR

[5] D. E. Knuth, “Haffman's algorithm via algebra”, J. of combinatorial Theory, 32:2, no. A, 216–224 | DOI | MR | Zbl

[6] N. N. Vorobev, Chisla Fibonachchi, Nauka, M., 1978, 142 pp. | MR

[7] R. J. McEliece, T. H. Palmatier, “Estimating the size of hauffman code preambules”, TDA Progress Report, 1993, 90–95, 42–114

[8] C. Berrou, A. Glavieux, P. Thitimajshima, “Near Shannon limit error-correcting coding and decoding: Turbo codes”, Proc. IEEE Int. Conf. on Communications, Geneva, Switzerland, 1993, 1064–1070

[9] Yu. M. Bishenov, “Neironnye seti v obuchenii i raspoznavanii”, Izvestiya KBNTs RAN, 2003, no. 1 (9), 1–9

[10] Yu. M. Bishenov, “Funktsionalnoe obuchenie i skrytye peremennye”, Izvestiya KBNTs RAN, 2004, no. 2 (11), 1–10

[11] Yu. M. Bishenov, A. V. Tarchokova, M. M. Mazanov, E. Oguz, Z. Shkhashimishev, “Novyi algoritm obucheniya LMS2 s predvychisleniem”, V kn. Materialy 2-i vsesoyuznoi konferentsii «Problemy informatizatsii regionalnogo upravleniya», Nalchik, 2006, 195–197

[12] H. Zhou, R. Lipowsky, “Dinamic pattern evolution on scale-free networks”, PNAS, 102:29 (2005), 10052–10057 | DOI