About Gauss's theorem
News of the Kabardin-Balkar scientific center of RAS, no. 2 (2005), pp. 48-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper shows that the method of proving Gauss's theorem, based on Maxwell's postulate, is more general than the method based on Coulomb's law. It allows us to extend Gauss's theorem to bodies of arbitrary shape. The charge distribution inside the body can also be arbitrary. The charge can move at any speed.
Mots-clés : Coulomb's law
Keywords: Gauss's theorem, Maxwell's equations
@article{IZKAB_2005_2_a6,
     author = {M. K. Makuashev},
     title = {About {Gauss's} theorem},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {48--54},
     publisher = {mathdoc},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2005_2_a6/}
}
TY  - JOUR
AU  - M. K. Makuashev
TI  - About Gauss's theorem
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2005
SP  - 48
EP  - 54
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2005_2_a6/
LA  - ru
ID  - IZKAB_2005_2_a6
ER  - 
%0 Journal Article
%A M. K. Makuashev
%T About Gauss's theorem
%J News of the Kabardin-Balkar scientific center of RAS
%D 2005
%P 48-54
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2005_2_a6/
%G ru
%F IZKAB_2005_2_a6
M. K. Makuashev. About Gauss's theorem. News of the Kabardin-Balkar scientific center of RAS, no. 2 (2005), pp. 48-54. http://geodesic.mathdoc.fr/item/IZKAB_2005_2_a6/

[1] N. T. Markchev, “Sravnenie razlichnykh form uravnenii Maksvella”, Maksvell i razvitie fiziki XIX-XX vekov, eds. otv. red. L.S. Polak, Nauka, M., 1985, 84–96

[2] Dzh. K. Maksvell, Traktat ob elektrichestve i magnetizme, v. 1, Nauka,, M., 1989, 416 pp. | MR

[3] Ya. P. Terletskii, Yu. P. Rybakov, Elektrodinamika, Vysshaya shkola, M., 1990, 352 pp.

[4] A. N. Matveev, Elektrichestvo i magnetizm, Vysshaya shkola, M., 1983, 463 pp.

[5] V. Smait, Elektrostatika i elektrodinamika, Izdatinlit, M., 1954, 604 pp.

[6] N. N. Mirolyubov, M. V. Kostenko, M. L. levinshtein, I. N. Tikhodeev, Metody rascheta elektrostaticheskikh polei, Vysshaya shkola, M., 1963, 416 pp.

[7] M. A. Tonella, osnovy elektromagnetizma i teorii otnositeldnosti, Izdatinlit, M., 1962, 488 pp.

[8] G. M. Fikhtengolts, Kurs differentsialnogo i integralnogo ischisleniya, Fizmatgiz, M., 1963, 656 pp.

[9] Dzh. Dzhekson, Klassicheskaya elektrodinamika, Mir, M., 1965, 704 pp.

[10] A. I. Akhiezer, I. A. Akhiezer, Elektromagnetizm i elektromagnitnye volny, Vysshaya shkola, M., 1986, 505 pp.

[11] D. V. Sivukhin, Obschii kurs fiziki, v. III. Elektrichestvo, Nauka, M., 1977, 688 pp.

[12] I. E. Tamm, Osnovy teorii elektrichestva, Nauka, M., 1975, 616 pp.

[13] A. F. Bermant, Otobrazhenie. Krivolineinye koordinaty. Preobrazovaniya. Formula Grina, Fizmatgiz, M., 1958, 308 pp.

[14] G. F. Laptev, Elementy vektornogo ischisleniya, Nauka, M., 1975, 336 pp.

[15] A. Dzh. Mak-Konnel, Vvedenie v tenzornyi analiz, Fizmatgiz, M., 1969, 412 pp.

[16] B. E. Pobedrya, Lektsii po tenzornomu analizu, MGU, M., 1974, 206 pp.

[17] V. V. Nikolskii, T. I. Nikolskaya, Elektrodinamika i rasprostranenie radiovoln, Nauka, M., 1989, 544 pp.

[18] V. I. Smirnov, Kurs vysshei matematiki, v. II, Nauka, M., 1974, 656 pp. | MR