About one two-dimensional mathematical model in cryomedicine
News of the Kabardin-Balkar scientific center of RAS, no. 2 (2005), pp. 1-5
Voir la notice de l'article provenant de la source Math-Net.Ru
The work shows that in the case of a flat and sufficiently long cryosurgical instrument, the process of heat propagation in biological tissue is modeled by a two-dimensional Stefan-type initial-boundary value problem. The formulation of this problem for a rectangular area is considered. An algorithm for finding approximate values of temperature and position of isothermal surfaces is presented. A solution is given to a “smoothed” problem that approximates the original Stefan problem using a locally one-dimensional method. The resulting nonlinear algebraic systems were solved using Newton's iterative method.
Keywords:
cryomedicine, hypothermia, Stefan type problem, two-dimensional initial-boundary value problem
@article{IZKAB_2005_2_a0,
author = {B. K. Buzdov and A. K. Buzdov},
title = {About one two-dimensional mathematical model in cryomedicine},
journal = {News of the Kabardin-Balkar scientific center of RAS},
pages = {1--5},
publisher = {mathdoc},
number = {2},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IZKAB_2005_2_a0/}
}
TY - JOUR AU - B. K. Buzdov AU - A. K. Buzdov TI - About one two-dimensional mathematical model in cryomedicine JO - News of the Kabardin-Balkar scientific center of RAS PY - 2005 SP - 1 EP - 5 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IZKAB_2005_2_a0/ LA - ru ID - IZKAB_2005_2_a0 ER -
B. K. Buzdov; A. K. Buzdov. About one two-dimensional mathematical model in cryomedicine. News of the Kabardin-Balkar scientific center of RAS, no. 2 (2005), pp. 1-5. http://geodesic.mathdoc.fr/item/IZKAB_2005_2_a0/