About one two-dimensional mathematical model in cryomedicine
News of the Kabardin-Balkar scientific center of RAS, no. 2 (2005), pp. 1-5.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work shows that in the case of a flat and sufficiently long cryosurgical instrument, the process of heat propagation in biological tissue is modeled by a two-dimensional Stefan-type initial-boundary value problem. The formulation of this problem for a rectangular area is considered. An algorithm for finding approximate values of temperature and position of isothermal surfaces is presented. A solution is given to a “smoothed” problem that approximates the original Stefan problem using a locally one-dimensional method. The resulting nonlinear algebraic systems were solved using Newton's iterative method.
Keywords: cryomedicine, hypothermia, Stefan type problem, two-dimensional initial-boundary value problem
@article{IZKAB_2005_2_a0,
     author = {B. K. Buzdov and A. K. Buzdov},
     title = {About one two-dimensional mathematical model in cryomedicine},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {1--5},
     publisher = {mathdoc},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2005_2_a0/}
}
TY  - JOUR
AU  - B. K. Buzdov
AU  - A. K. Buzdov
TI  - About one two-dimensional mathematical model in cryomedicine
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2005
SP  - 1
EP  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2005_2_a0/
LA  - ru
ID  - IZKAB_2005_2_a0
ER  - 
%0 Journal Article
%A B. K. Buzdov
%A A. K. Buzdov
%T About one two-dimensional mathematical model in cryomedicine
%J News of the Kabardin-Balkar scientific center of RAS
%D 2005
%P 1-5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2005_2_a0/
%G ru
%F IZKAB_2005_2_a0
B. K. Buzdov; A. K. Buzdov. About one two-dimensional mathematical model in cryomedicine. News of the Kabardin-Balkar scientific center of RAS, no. 2 (2005), pp. 1-5. http://geodesic.mathdoc.fr/item/IZKAB_2005_2_a0/

[1] B. M. Budak, F. P. Vasilev, A. B. Uspenskii, “Raznostnye metody resheniya nekotorykh kraevykh zadach tipa Stefana”, Chislennye metody v gazovoi dinamike, 1965, no. IV, 139–183, MGU, Myu

[2] A. A. Samarskii, “Lokalno-odnomernye raznostnye skhemy na neravnomernykh setkakh”, ZhVM i MF, 3:3 (1963), 431–466

[3] A. A. Samarskii, B. D. Moiseenko, “Ekonomicheskaya skhema skvoznogo scheta dlya mnogomernoi zadachi Stefana”, ZhVMiMF, 5:3 (1965), 816–827

[4] B. K. Buzdov, “O skhodimosti metoda kvazilinearizatsii v nelineinykh kraevykh zadachakh”, Nelineinye kraevye zadachi matematicheskoi fiziki i ikh prilodeniya, 1993, Institut matematiki AN Ukrainy, Kiev

[5] Zhurnal «Kriobiologiya», v. 3, Naukova dumka, Kiev, 1989