About one two-dimensional mathematical model in cryomedicine
News of the Kabardin-Balkar scientific center of RAS, no. 2 (2005), pp. 1-5
Cet article a éte moissonné depuis la source Math-Net.Ru
The work shows that in the case of a flat and sufficiently long cryosurgical instrument, the process of heat propagation in biological tissue is modeled by a two-dimensional Stefan-type initial-boundary value problem. The formulation of this problem for a rectangular area is considered. An algorithm for finding approximate values of temperature and position of isothermal surfaces is presented. A solution is given to a “smoothed” problem that approximates the original Stefan problem using a locally one-dimensional method. The resulting nonlinear algebraic systems were solved using Newton's iterative method.
Keywords:
cryomedicine, hypothermia, Stefan type problem, two-dimensional initial-boundary value problem
@article{IZKAB_2005_2_a0,
author = {B. K. Buzdov and A. K. Buzdov},
title = {About one two-dimensional mathematical model in cryomedicine},
journal = {News of the Kabardin-Balkar scientific center of RAS},
pages = {1--5},
year = {2005},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IZKAB_2005_2_a0/}
}
B. K. Buzdov; A. K. Buzdov. About one two-dimensional mathematical model in cryomedicine. News of the Kabardin-Balkar scientific center of RAS, no. 2 (2005), pp. 1-5. http://geodesic.mathdoc.fr/item/IZKAB_2005_2_a0/
[1] B. M. Budak, F. P. Vasilev, A. B. Uspenskii, “Raznostnye metody resheniya nekotorykh kraevykh zadach tipa Stefana”, Chislennye metody v gazovoi dinamike, 1965, no. IV, 139–183, MGU, Myu
[2] A. A. Samarskii, “Lokalno-odnomernye raznostnye skhemy na neravnomernykh setkakh”, ZhVM i MF, 3:3 (1963), 431–466
[3] A. A. Samarskii, B. D. Moiseenko, “Ekonomicheskaya skhema skvoznogo scheta dlya mnogomernoi zadachi Stefana”, ZhVMiMF, 5:3 (1965), 816–827
[4] B. K. Buzdov, “O skhodimosti metoda kvazilinearizatsii v nelineinykh kraevykh zadachakh”, Nelineinye kraevye zadachi matematicheskoi fiziki i ikh prilodeniya, 1993, Institut matematiki AN Ukrainy, Kiev
[5] Zhurnal «Kriobiologiya», v. 3, Naukova dumka, Kiev, 1989