Effects of the dynamics of noise-induced calcium signals in a biophysical model of the astrocytic process
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 33 (2025) no. 1, pp. 82-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this work is to study the effects of spatio-temporal dynamics of spontaneous calcium signaling in the morphological structure of an astrocyte at the subcellular level using biophysical mathematical modeling methods. Methods. This work proposes a biophysical multicompartmental model of noise-induced calcium dynamics in the astrocytic process. The model describes the process of generation of spontaneous Ca2+ signals induced by the stochastic activation of voltage-dependent Ca2+ channels on the plasma membrane of the astrocyte. The model allows us to study the dynamics of the propagation of spontaneous local Ca2+ signals and the mechanisms of formation of spatial Ca2+ patterns in the astrocytic process. Results. The developed model enables studying the influence of morphology and intracellular biophysical mechanisms on the characteristics of spontaneous noise-induced Ca2+ signaling in the astrocytic process. The parameter ranges at which the model qualitatively reproduces the spontaneous Ca2+ activity at the subcellular level observed in experimental studies have been specified. The characteristics of noise-induced Ca2+ patterns propagating along the process were investigated, depending on the internal structure of the process, its geometry, and the steady state concentration of inositol 1,4,5-triphosphate molecules.
Keywords: astrocytic process, compartment, calcium signal, inositol 1, 4, 5-triphosphate, anomalous diffusion
@article{IVP_2025_33_1_a6,
     author = {A. V. Ermolaeva and I. A. Kastalskiy and V. B. Kazantsev and S. Yu. Gordleeva},
     title = {Effects of the dynamics of noise-induced calcium signals in a biophysical model of the astrocytic process},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {82--99},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2025},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2025_33_1_a6/}
}
TY  - JOUR
AU  - A. V. Ermolaeva
AU  - I. A. Kastalskiy
AU  - V. B. Kazantsev
AU  - S. Yu. Gordleeva
TI  - Effects of the dynamics of noise-induced calcium signals in a biophysical model of the astrocytic process
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2025
SP  - 82
EP  - 99
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2025_33_1_a6/
LA  - ru
ID  - IVP_2025_33_1_a6
ER  - 
%0 Journal Article
%A A. V. Ermolaeva
%A I. A. Kastalskiy
%A V. B. Kazantsev
%A S. Yu. Gordleeva
%T Effects of the dynamics of noise-induced calcium signals in a biophysical model of the astrocytic process
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2025
%P 82-99
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2025_33_1_a6/
%G ru
%F IVP_2025_33_1_a6
A. V. Ermolaeva; I. A. Kastalskiy; V. B. Kazantsev; S. Yu. Gordleeva. Effects of the dynamics of noise-induced calcium signals in a biophysical model of the astrocytic process. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 33 (2025) no. 1, pp. 82-99. http://geodesic.mathdoc.fr/item/IVP_2025_33_1_a6/

[1] Semyanov A., “Spatiotemporal pattern of calcium activity in astrocytic network”, Cell calcium, 78 (2019), 15–25 | DOI

[2] Li Y. X, Rinzel J., “Equations for InsP3 receptor-mediated [Ca2+]i oscillations derived from a detailed kinetic model: a Hodgkin-Huxley like formalism”, Journal of theoretical Biology, 166:4 (1994), 461–73 | DOI

[3] Ullah G., Jung P., Cornell-Bell A. H., “Anti-phase calcium oscillations in astrocytes via inositol (1, 4, 5)-trisphosphate regeneration”, Cell calcium, 39:3 (2006), 197–208 | DOI

[4] Nett W. J., Oloff S. H., Mccarthy K. D., “Hippocampal astrocytes in situ exhibit calcium oscillations that occur independent of neuronal activity”, Journal of neurophysiology, 87:1 (2002), 528–37 | DOI

[5] Volterra A., Liaudet N., Savtchouk I., “Astrocyte Ca2+ signalling: an unexpected complexity”, Nature Reviews Neuroscience, 15:5 (2014), 327–35 | DOI

[6] Skupin A., Kettenmann H., Falcke M., “Calcium signals driven by single channel noise”, PLoS computational biology, 6:8 (2010), e1000870 | DOI

[7] Oschmann F., Mergenthaler K., Jungnickel E., Obermayer K., “Spatial separation of two different pathways accounting for the generation of calcium signals in astrocytes”, PLoS computational biology, 13:2 (2017), e1005377 | DOI

[8] De Pittà M., Goldberg M., Volman V., Berry H., Ben-Jacob E., “Glutamate regulation of calcium and IP3 oscillating and pulsating dynamics in astrocytes”, Journal of biological physics, 35 (2009), 383–411 | DOI

[9] Matrosov V. V, Kazantsev V. B., “Bifurcation mechanisms of regular and chaotic network signaling in brain astrocytes”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 21:2 (2011) | DOI

[10] Kang M., Othmer H. G., “Spatiotemporal characteristics of calcium dynamics in astrocytes”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 19:3 (2009) | DOI

[11] Kazantsev V. B., “Spontaneous calcium signals induced by gap junctions in a network model of astrocytes”, Physical Review E, \: 1 (2009), 010901 | DOI

[12] Gordleeva S. Y., Stasenko S. V., Semyanov A. V., Dityatev A. E., Kazantsev V. B., “Bi-directional astrocytic regulation of neuronal activity within a network”, Frontiers in computational neuroscience, 6 (2012), 92 | DOI

[13] De Pittà M., Volman V., Berry H., Ben-Jacob E., “A tale of two stories: astrocyte regulation of synaptic depression and facilitation”, PLoS computational biology, 7:12 (2011), e1002293 | DOI

[14] Volman V., Ben-Jacob E., Levine H., “The astrocyte as a gatekeeper of synaptic information transfer”, Neural computation, 19:2 (2007), 303–26 | DOI

[15] Postnov D. E., Koreshkov R. N., Brazhe N. A., Brazhe A. R., Sosnovtseva O. V., “Dynamical patterns of calcium signaling in a functional model of neuron–astrocyte networks”, Journal of biological physics, 35 (2009), 425–45 | DOI

[16] Bindocci E., Savtchouk I., Liaudet N., Becker D., Carriero G., Volterra A., “Three-dimensional Ca2+ imaging advances understanding of astrocyte biology”, Science, 356:6339 (2017), eaai8185 | DOI

[17] Brazhe A., Verisokin A., Verveyko D., Postnov D., “Astrocytes: new evidence, new models, new roles”, Biophysical Reviews, 15:P (2023), 1–31 | DOI

[18] Wu Y. W., Gordleeva S., Tang X., Shih P. Y., Dembitskaya Y., Semyanov A., “Morphological profile determines the frequency of spontaneous calcium events in astrocytic processes”, Glia, 67:2 (2019), 246-62 | DOI

[19] Savtchenko L. P., Bard L., Jensen T. P., Reynolds J. P., Kraev I., Medvedev N., Stewart M. G., Henneberger C., Rusakov D. A., “Disentangling astroglial physiology with a realistic cell model in silico”, Nature communications, 9:1 (2018), 3554 | DOI

[20] Gordleeva S. Y., Lebedev S. A., Rumyantseva M. A., Kazantsev V. B., “Astrocyte as a detector of synchronous events of a neural network”, JETP Letters, 107 (2018), 440–5 | DOI

[21] Gordleeva S. Y., Ermolaeva A. V., Kastalskiy I. A., Kazantsev V. B., “Astrocyte as spatiotemporal integrating detector of neuronal activity”, Frontiers in physiology, 10 (2019), 294 | DOI

[22] Kastalskiy I., Ermolaeva A., Kazantsev V., Gordleeva S., “Impact of the steady state IP3 level on the intracellular Ca2+ signaling in spatially distributed model of astrocyte”, 2020 4th Scientific School on Dynamics of Complex Networks and their Application in Intellectual Robotics (DCNAIR), 2020, 120–123 | DOI

[23] Zeng S., Li B., Zeng S., Chen S., “Simulation of spontaneous Ca2+ oscillations in astrocytes mediated by voltage-gated calcium channels”, Biophysical journal, 97:9 (2009), 2429–37 | DOI

[24] Yaguchi T., Nishizaki T., “Extracellular high K+ stimulates vesicular glutamate release from astrocytes by activating voltage-dependent calcium channels”, Journal of Cellular Physiology, 225:2 (2010), 512-8 | DOI

[25] Letellier M., Park Y. K., Chater T. E., Chipman P. H., Gautam S. G., Oshima-Takago T., Goda Y., “Astrocytes regulate heterogeneity of presynaptic strengths in hippocampal networks”, Proceedings of the National Academy of Sciences, 113:19 (2016), E2685-94 | DOI

[26] Zamora N. N., Cheli V. T., Santiago González D. A., Wan R., Paez P. M., “Deletion of Voltage-Gated Calcium Channels in Astrocytes during Demyelination Reduces Brain Inflammation and Promotes Myelin Regeneration in Mice”, The Journal of Neuroscience, 40:17 (2020), 3332–3347 | DOI

[27] Hodgkin A. L., Huxley A. F., “A quantitative description of membrane current and its application to conduction and excitation in nerve”, The Journal of physiology, 117:4 (1952), 500–544 | DOI

[28] Dupont G., Goldbeter A., “One-pool model for Ca2+ oscillations involving Ca2+ and inositol 1,4,5-trisphosphate as co-agonists for Ca2+ release”, Cell calcium, 14:4 (1993), 311–22 | DOI

[29] Gordleeva S. Yu., Matrosov V. V., Kazantsev V. B., “Kaltsievye kolebaniya v astrotsitakh. Chast 1. Astrotsit kak generator kaltsievykh kolebanii”, Izvestiya vuzov. Prikladnaya nelineinaya dinamika, 20:3 (2012) | DOI

[30] Cresswell-Clay E., Crock N., Tabak J. and Erlebacher G., “A Compartmental Model to Investigate Local and Global Ca2+ Dynamics in Astrocytes”, Frontiers in Computational Neuroscience, 12 (2018), 94 | DOI

[31] Verisokin A. Y., Verveyko D. V., Postnov D. E., Brazhe A. R., “Modeling of Astrocyte Networks: Toward Realistic Topology and Dynamics”, Frontiers in Cellular Neuroscience, 15 (2021), 645068 | DOI

[32] Santello M., Toni N., Volterra A., “Astrocyte function from information processing to cognition and cognitive impairment”, Nature neuroscience, 22:2 (2019), 154–66 | DOI

[33] Popov A., Brazhe A., Denisov P., Sutyagina O., Li L., Lazareva N., Verkhratsky A., Semyanov A., “Astrocyte dystrophy in ageing brain parallels impaired synaptic plasticity”, Aging cell, 20:3 (2021), e13334 | DOI

[34] Olabarria M., Noristani H. N., Verkhratsky A., Rodríguez J. J., “Concomitant astroglial atrophy and astrogliosis in a triple transgenic animal model of Alzheimer's disease”, Glia, 58:7 (2010), 831–8 | DOI