Model of 2D-imaging system using correlation-based reception for image synthesis of radio light sources
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 33 (2025) no. 1, pp. 69-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this work is to create a model of a system for constructing 2D images of radio light sources, where reception is based on correlation processing of signals coming from receiving antennas placed apart in space. In this article radio light refers to ultrawideband noise-like microwave radiation. Methods. To achieve this goal, a method for constructing an image is proposed and its implementation is tested using computer modeling of an imaging system. Results. It is shown how, using correlation signal processing methods, it is possible to construct 2D images of radio light sources using the example of computer modeling. Images of radio light sources were obtained, where it is possible to observe in one image two sources with a difference in the level of the emitted signal of 12 dB. Conclusion. A computer model of a correlation-based radio light receiver has been developed, which makes it possible to evaluate the influence of the number of antennas on the final image, as well as to obtain images of several radio light sources. The results of the computer simulation can be used to create a model of a real imaging system for radio light based on correlation processing.  
Keywords: ultrawideband, Dynamic chaos, radio light, correlation receiver, image, modeling
@article{IVP_2025_33_1_a5,
     author = {M. M. Petrosyan and A. I. Ryzhov},
     title = {Model of {2D-imaging} system using correlation-based reception for image synthesis of radio light sources},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {69--81},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2025},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2025_33_1_a5/}
}
TY  - JOUR
AU  - M. M. Petrosyan
AU  - A. I. Ryzhov
TI  - Model of 2D-imaging system using correlation-based reception for image synthesis of radio light sources
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2025
SP  - 69
EP  - 81
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2025_33_1_a5/
LA  - ru
ID  - IVP_2025_33_1_a5
ER  - 
%0 Journal Article
%A M. M. Petrosyan
%A A. I. Ryzhov
%T Model of 2D-imaging system using correlation-based reception for image synthesis of radio light sources
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2025
%P 69-81
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2025_33_1_a5/
%G ru
%F IVP_2025_33_1_a5
M. M. Petrosyan; A. I. Ryzhov. Model of 2D-imaging system using correlation-based reception for image synthesis of radio light sources. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 33 (2025) no. 1, pp. 69-81. http://geodesic.mathdoc.fr/item/IVP_2025_33_1_a5/

[1] Spiridonov O. P., Svet. Fizika. Informatsiya. Zhizn, Lenand, M., 2014, 218 pp.

[2] Shutko A. M., SVCh-radiometriya vodnoi poverkhnosti i pochvogruntov, Nauka, M., 1986, 190 pp.

[3] Sharkov E. A., Radioteplovoe distantsionnoe zondirovanie Zemli: fizicheskie osnovy, v. 1, IKI RAN, M., 2014, 544 pp.

[4] Gulyaev Yu. V., Fizicheskie polya i izlucheniya cheloveka: Novye neinvazivnye metody meditsinskoi diagnostiki, RBOF «Znanie» im. Vavilova, M., 2009, 28 pp.

[5] Polivka J., Fiala P., Machac J. Medvedeva T. M., “Microwave noise field behaves like white light”, Progress in Electromagnetics Research, 111 (2011), 311–330 | DOI

[6] Polivka J., “Microwave radiometry and applications”, International Journal of Infrared and Millimeter Waves, 16 (1995), 1593–1672 | DOI

[7] Polivka J., “Microwave noise radiators”, International Journal of Infrared and Millimeter Waves, 18 (1997), 2403–2410 | DOI

[8] Pallaprolu A., Korany B., Mostofi Y., “Analysis of Keller cones for RF imaging”, 2023 IEEE Radar Conference (RadarConf23) (San Antonio, TX, USA), 2023, 1–6 | DOI

[9] Korany B., Karanam C. R., Mostofi Y., “Adaptive near-field imaging with robotic arrays”, P2018 IEEE 10th Sensor Array and Multichannel Signal Processing Workshop (SAM) (Sheffield, UK, 08-11 July 2018), IEEE, N.-Y., 2018, 134 | DOI

[10] Dmitriev A. S., Efremova E. V., “Istochniki radioosvescheniya na osnove sverkhshirokopolosnykh mikrogeneratorov khaoticheskikh kolebanii”, Pisma v ZhTF, 42:24 (2016) | DOI

[11] Dmitriev A. S., Efremova E. V., Ryzhov A. I., Petrosyan M. M., Itskov V. V., “Artificial radio lighting with sources of microwave dynamic chaos”, Chaos, 31:6 (2021) | DOI

[12] Gulyaev Yu. V., Dmitriev A. S., Itskov V. V., Petrosyan M. M., Ryzhov A. I., Uvarov A. V., “Yacheika priemnika radiosveta”, Radiotekhnika i elektronika, 63:9 (2018) | DOI

[13] Dmitriev A. S., Itskov V. V., Petrosyan M. M., Popov M. G., Ryzhov A. I., “Iskusstvennoe radioosveschenie v zakrytom prostranstve”, Radiotekhnika i elektronika, 64:9 (2019) | DOI

[14] Dmitriev A. S., Petrosyan M. M., Ryzhov A. I., “Eksperimentalnaya model mnogoluchevogo ustroistva dlya nablyudeniya v radiosvete”, Pisma v ZhTF, 47:12 (2021) | DOI

[15] Petrosyan M. M., Ryzhov A. I., “Correlation-based reception method of radio light with spatial resolution and its implementation”, Journal of Communications Technology and Electronics, 68:9 (2023), 1015–1023 | DOI

[16] Romanyuk Yu. A., Osnovy obrabotki signalov: Ucheb. posobie, MFTI, M., 1989, 92 pp.

[17] Kaizer J. F., “Nonrecursive digital filter design using the I0-Sinh Window function”, Proceedings of the 1974 IEEE International Symposium on Circuits and Systems, ISCAS'7 (San Francisco, Calif, USA), 1974, 20–23