Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2025_33_1_a4, author = {V. A. Khramenkov and A. S. Dmitrichev and V. I. Nekorkin}, title = {Multistability of synchronous modes in a multimachine power grid with a common load and their global and non-local stability}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {38--68}, publisher = {mathdoc}, volume = {33}, number = {1}, year = {2025}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2025_33_1_a4/} }
TY - JOUR AU - V. A. Khramenkov AU - A. S. Dmitrichev AU - V. I. Nekorkin TI - Multistability of synchronous modes in a multimachine power grid with a common load and their global and non-local stability JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2025 SP - 38 EP - 68 VL - 33 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2025_33_1_a4/ LA - ru ID - IVP_2025_33_1_a4 ER -
%0 Journal Article %A V. A. Khramenkov %A A. S. Dmitrichev %A V. I. Nekorkin %T Multistability of synchronous modes in a multimachine power grid with a common load and their global and non-local stability %J Izvestiya VUZ. Applied Nonlinear Dynamics %D 2025 %P 38-68 %V 33 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVP_2025_33_1_a4/ %G ru %F IVP_2025_33_1_a4
V. A. Khramenkov; A. S. Dmitrichev; V. I. Nekorkin. Multistability of synchronous modes in a multimachine power grid with a common load and their global and non-local stability. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 33 (2025) no. 1, pp. 38-68. http://geodesic.mathdoc.fr/item/IVP_2025_33_1_a4/
[1] Zhdanov P. S., Voprosy ustoichivosti elektricheskikh sistem, Energiya, M., 1979, 456 pp.
[2] Venikov V. A., Perekhodnye elektromekhanicheskie protsessy v elektricheskikh sistemakh, Vysshaya shkola, M.
[3] Idelchik V. I., Elektricheskie sistemy i seti, Energoatomizdat, M., 1989, 592 pp.
[4] Kundur P., Balu N. J., Lauby M. G., Power System Stability and Control, McGraw-Hill Education, New York, 1994, 1176 pp.
[5] Sauer P., Pai A., Power System Dynamics and Stability, Englewood Cliffs, Prentice-Hall, 1998, 357 pp.
[6] Anderson P. M., Fouad A. A., Power System Control and Stability, IEEE, Piscataway, NJ, 2003, 672 pp.
[7] Horowitz S. H., Phadke A. G., Henville C. F., Power System Relaying, John Wiley Sons, New York, 2008, 528 pp.
[8] Machowski J., Bialek J., Bumby D., Power System Dynamics: Stability and Control, John Wiley Sons, New York, 2008, 629 pp.
[9] Grainger J. J., Stevenson W. D., Power System Analysis, McGraw-Hill Education, New York, 2016, 787 pp.
[10] Park R. H., “Two-reaction theory of synchronous machines: Generalized method ofanalysis”, Transactions of the American Institute of Electrical Engineers, 48:3 (1929), 716–730 | DOI
[11] Gorev A. A., Perekhodnye protsessy sinkhronnoi mashiny, Gosenergoizdat, M., 1950, 553 pp.
[12] Wiatros-Motyka M., Global Electricity Review 2023, Ember, New York, 2023, 163 pp.
[13] Dobson I., Carreras B. A., Lynch V. E., Newman D. E., “Complex systems analysis of series of blackouts: Cascading failure, critical points, and self-organization”, Chaos, 17:2 (2007), 026103 | DOI
[14] Schäfer B., Witthaut D., Timme M., Latora V., “Dynamically induced cascading failures in power grids”, Nat. Commun, 9:1 (2018), 1975 | DOI
[15] Bialek J. W., “Why has it happened again? Comparison between the UCTE blackout in 2006 and the blackouts of 2003”, IEEE Lausanne Power Tech (Lausanne, Switzerland), 2007, 51–56 | DOI
[16] Li C., Sun Y., Chen X., “Analysis of the blackout in Europe on November 4, 2006”, 2007 International Power Engineering Conference (IPEC 2007), 2007, 939–944
[17] Vleuten E., Lagendijk V., “Interpreting transnational infrastructure vulnerability: European blackout and the historical dynamics of transnational electricity governance”, Energy Policy, 38:4 (2010), 2053–2062 | DOI
[18] Veloza O. P., Santamaria F., “Analysis of major blackouts from 2003 to 2015: classification of incidents and review of main causes”, Electr. J., 29:7 (2016), 42–49 | DOI
[19] Shao Y., Tang T., Yi J., Wang A., “Analysis and lessons of blackout in Turkey power grid on March 31”, AEPS, 40:23 (2016), 9–14 | DOI
[20] Gajduk A., Todorovski M., Kocarev L., “Stability of power grids: An overview”, The European Physical Journal Special Topics, 223:12 (2014), 2387–2409 | DOI
[21] Filatrella G., Nielsen A. H., Pedersen N. F., “Analysis of a power grid using a Kuramoto-like model”, The European Physical Journal B, 61:4 (2008), 485–491
[22] Nitzbon J., Schultz P., Heitzig J., Kurths J., Hellmann F., “Deciphering the imprint of topology on nonlinear dynamical network stability”, New J. Phys., 19:3 (2017), 033029 | DOI
[23] Kim H., Lee S. H., Davidsen J., Son S., “Multistability and variations in basin of attraction in power-grid systems”, New J. Phys., 20:11 (2018), 113006 | DOI
[24] Hellmann F., Schultz P., Jaros P., Levchenko R., Kapitaniak T., Kurths J., Maistrenko Y., “Network-induced multistability through lossy coupling and exotic solitary states”, Nat. Commun, 11:1 (2020) | DOI
[25] Khramenkov V. A., Dmitrichev A. S., Nekorkin V. I., “A new scenario for Braess's paradox in power grids”, Chaos, 32:11 (2022) | DOI
[26] Gupta P. C., Singh P. P., “Chaos, multistability and coexisting behaviours in small-scale grid: Impact of electromagnetic power, random wind energy, periodic load and additive white Gaussian noise”, Pramana, 97:3 (2023) | DOI
[27] Korsak A. J., “On the Question of uniqueness of stable load-flow solutions”, IEEE Transactions on Power Apparatus and Systems, 91:3 (1972), 1093–1100 | DOI
[28] Casazza J. A., “Blackouts: Is the risk increasing?”, Electrical World, 212:4 (1998), 62–64
[29] Janssens N., Kamagate A., “Loop flows in a ring AC power system”, International Journal of Electrical Power Energy Systems, 25:8 (2003), 591–597 | DOI
[30] Coletta T., Delabays R., Adagideli I., Jacquod P., “Topologically protected loop flows in high voltage AC power grids”, New Journal of Physics, 18:10 (2016), 103042 | DOI
[31] Delabays R., Coletta T., Jacquod P., “Multistability of phase-locking and topological winding numbers in locally coupled Kuramoto models on single-loop networks”, Journal of Mathematical Physics, 57:3 (2016), 032701 | DOI
[32] Manik D., Timme M., Witthaut D., “Cycle flows and multistability in oscillatory networks”, Chaos, 27:8 (2017), 083123 | DOI
[33] Delabays R., Jafarpour S., Bullo F., “Multistability and anomalies in oscillator models of lossy power grids”, Nat. Commun, 13:1 (2022), 5238 | DOI
[34] Venkatasubramanian V., Schattler H., Zaborszky J., “Voltage dynamics: study of a generator with voltage control, transmission, and matched MW load”, IEEE Transactions on Automatic Control, 37:11 (1992), 1717–1733
[35] Nguyen H. D., Turitsyn K., “Voltage multistability and pulse emergency control for distribution system with power flow reversal”, IEEE Transactions on Smart Grid, 6:6 (2014), 2985–2996
[36] Balestra C., Kaiser F., Manik D., Witthaut D., “Multistability in lossy power grids and oscillator networks”, Chaos, 29:12 (2019), 123119 | DOI
[37] Khramenkov V. A., Dmitrichev A. S., Nekorkin V. I., “Bistability of operating modes and their switching in a three-machine power grid”, Chaos, 33:10 (2023) | DOI
[38] Kwatny H., Pasrija A., Bahar L., “Static bifurcations in electric power networks: Loss of steady-state stability and voltage collapse”, IEEE Transactions on Circuits and Systems, 33:10 (1986), 981–991 | DOI
[39] Ayasun S., Nwankpa C. O., Kwatny H. G., “Computation of singular and singularity induced bifurcation points of differential-algebraic power system model”, IEEE Transactions on Circuits and Systems I: Regular Papers, 51:8 (2004), 1525–1538 | DOI
[40] Thümler M., Zhang X., Timme M., “Absence of pure voltage instabilities in the third-order model of power grid dynamics”, Chaos, 32:4 (2022), 043105 | DOI
[41] Kalentionok E. V., Ustoichivost elektroenergeticheskikh sistem, Tekhnoperspektiva, Minsk, 2008, 375 pp.
[42] Bergen A. R., Hill D. J., “A structure preserving model for power system stability analysis”, IEEE Transactions on Power Apparatus and Systems, PAS-100:1 (1981), 25–35 | DOI
[43] Nishikawa T., Motter A. E., “Comparative analysis of existing models for power grid synchronization”, New J. Phys., 17:1 (2015), 015012 | DOI
[44] Grzybowski J. M. V., Macau E. E. N., Yoneyama T., “Power-grids as complex networks: Emerging investigations into robustness and stability”, Chaotic, Fractional, and Complex Dynamics: New Insights and Perspectives. Understanding Complex Systems, eds. Edelman M., Macau E., Sanjuan M., Springer, Cham, 2019, 287-–315 | DOI
[45] Kogler R., Plietzsch A., Schultz P., Hellmann F., “Normal form for grid-forming power grid actors”, PRX Energy, 1:1 (2022), 013008
[46] Rohden M., Sorge A., Timme M., Witthaut D., “Self-organized synchronization in decentralized power grids”, Phys. Rev. Lett., 109:6 (2012), 064101
[47] Witthaut D., Timme M., “Braess‘s paradox in oscillator networks, desynchronization and power outage”, New J. Phys., 14:8 (2012), 083036
[48] Fortuna L., Frasca M., Sarra-Fiore A., “A network of oscillators emulating the Italian high-voltage power grid”, International Journal of Modern Physics B, 26:25 (2012), 1246011 | DOI
[49] Lozano S., Buzna L., Diaz-Guilera A., “Role of network topology in the synchronization of power systems”, The European Physical Journal B, 85:7 (2012), 231 | DOI
[50] Motter A. E., Myers S. A., Anghel M., Nishikawa T., “Spontaneous synchrony in power-grid networks”, Nature Physics, 9 (2013), 191–197
[51] Khramenkov V. A., Dmitrichev A. S., Nekorkin V. I., “Dynamics and stability of two power grids with hub cluster topologies”, Cybernetics and physics, 8:1 (2019), 29–99 | DOI
[52] Halekotte L., Feudel U., “Minimal fatal shocks in multistable complex networks”, Scientific Reports, 10:1 (2020), 11783
[53] Arinushkin P. A., Anischenko V. S., “Analiz sinkhronnykh rezhimov raboty tsepochki svyazannykh ostsillyatorov energosetei”, Izvestiya vuzov. Prikladnaya nelineinaya dinamika, 26:3 (2018), 62–77 | DOI
[54] Arinushkin P. A., Anischenko V. S., “Vliyanie vykhodnoi moschnosti generatorov na chastotnye kharakteristiki energoseti v koltsevoi topologii”, Izvestiya vuzov. Prikladnaya nelineinaya dinamika, 27:6 (2019) | DOI
[55] Khramenkov V. A., Dmitrichev A. S., Nekorkin V. I., “Porogovaya ustoichivost sinkhronnogo rezhima energoseti s topologiei khab-klastera”, Izvestiya vuzov. Prikladnaya nelineinaya dinamika, 28:2 (2020), 120–139 | DOI
[56] Arinushkin, P. A., Vadivasova T. E., “Nonlinear damping effects in a simplified power grid model based on coupled Kuramoto-like oscillators with inertia”, Chaos Solitons and Fractals, 152 (2021), 111343 | DOI
[57] Witthaut D., Timme M., “Nonlocal failures in complex supply networks by single link additions”, The European Physical Journal B, 86:9 (2013), 377 | DOI
[58] Schafer B., Pesch T., Manik D., Gollenstede J., Lin G., Beck H.-P., Witthaut D., Timme M., “Understanding Braess’ paradox in power grids”, Nat. Commun, 13:1 (2022), 5396 | DOI
[59] Witthaut D., Hellmann F., Kurths J., Kettemann S., “Collective nonlinear dynamics and self-organization in decentralized power grids”, Rev. Mod. Phys., 94:1 (2022), 015005 | DOI
[60] Dörfler F., Bullo F., “On the critical coupling for Kuramoto oscillators”, SIAM Journal on Applied Dynamical Systems, 10:3 (2011), 1070–1099 | DOI
[61] Dörfler F., Bullo F., “Synchronization and transient stability in power networks and non-uniform Kuramoto oscillators”, SIAM Journal on Control and Optimization, 50:3 (2012), 1616–1642 | DOI
[62] Dörfler F., Chertkov M., Bullo F., “Synchronization in complex oscillator networks and smart grids”, Proc. Natl. Acad. Sci. U.S.A, 110:6 (2013) | DOI
[63] Khramenkov V. A., Dmitrichev A. S., Nekorkin V. I., “Partial stability criterion for a heterogeneous power grid with hub structures”, Chaos, Solitons and Fractals, 152 (2021), 111373 | DOI
[64] Molnar F., Nishikawa T., Motter A. E., “Asymmetry underlies stability in power grids”, Nat. Commun, 12:1 (2021), 1457 | DOI
[65] Menck P. J., Heitzig J., Marwan N., Kurths J., “How basin stability complements the linear-stability paradigm”, Nat. Phys., 9:2 (2013) | DOI
[66] Menck P. J., Heitzig J., Kurths J., Schellnhuber J. H., “How dead ends undermine power grid stability”, Nat. Commun, 5:1 (2014), 3969
[67] Hellmann F., Schultz P., Grabow C., Heitzig J., “Survivability of deterministic dynamical systems”, Sci. Rep., 6:1 (2016), 29654 | DOI
[68] Klinshov V. V., Nekorkin V. I., Kurths J., “Stability threshold approach for complex dynamical systems”, New J. Phys., 18:1 (2015), 013004 | DOI
[69] Mitra C., Kittel T., Choudhary A., Kurths J., Donner R. V., “Recovery time after localized perturbations in complex dynamical networks”, New J. Phys., 19:10 (2017), 103004 | DOI
[70] Kim H., Lee M. J., Lee S. H., Son S.-W., “On structural and dynamical factors determining the integrated basin instability of power-grid nodes”, Chaos, 29:10 (2019), 103132 | DOI
[71] Kim H., “How modular structure determines operational resilience of power grids”, New J. Phys., 23:12 (2019), 129501 | DOI
[72] Klinshov V. V., Kirillov S. Yu., Kurths J., Nekorkin V. I., “Interval stability for complex systems”, New J. Phys., 20:4 (2018), 043040 | DOI
[73] Bessonov L. A., Teoreticheskie osnovy elektrotekhniki, Vysshaya shkola, M., 1996, 587 pp.
[74] Zhang X., Rehtanz C., Pal B. C., Flexible AC transmission systems: modelling and control, Springer, Berlin, Heidelberg, 2012, 546 pp.
[75] Gantmakher F. R., Teoriya matrits, Nauka, M., 1966, 576 pp.
[76] Gray R. M., “Toeplitz and circulant matrices: a review”, Foundations and Trends in Communications and Information Theory, 2:3 (2006) | DOI
[77] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989, 655 pp.