Multistability of synchronous modes in a multimachine power grid with a common load and their global and non-local stability
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 33 (2025) no. 1, pp. 38-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this work is studying the dynamics of the power grid consisting of an arbitrary number of synchronous generators supplying a common passive linear load. We focus on searching the conditions for the existence and stability of synchronous modes, i.e. the main operating modes of a power grid. The possibility of the existence of non-synchronous (quasi-synchronous and asynchronous) modes is investigated. Methods. To study the dynamics of a power grid we use the effective network model in the form of an ensemble of globally coupled nodes-generators. The state of every node is described by the swing equation. The approach for reducing the effective network to the network with a hub topology (star topology) is proposed. We use numerical methods to construct a partition of the parameter space into areas with different operating modes of the power grid. Results. The conditions for the existence, stability and multistability of synchronous modes are obtained. The main characteristics of these modes are considered, such as the power supplied by generators to the grid and the distribution of currents along transmission lines. We constructed the partition of the power gird parameter space into areas with different dynamics. Conclusion. The power grid consisting of an arbitrary number of synchronous generators supplying a common passive linear load has been studied. We shown the presence of two types of synchronous modes: homogeneous and inhomogeneous. The first is characterized by equal powers and currents flowing through all load supply paths except one. The second provides another additional path, which differs from the others in current and transmitted power. Moreover, the currents flowing along the same path, but in various modes, differ. The presence of high multistability of inhomogeneous synchronous modes has been established. The possibility of coexistence of homogeneous and inhomogeneous synchronous modes, as well as quasi-synchronous and asynchronous modes, is shown. In the power grid parameters space we found areas corresponding both the existence of only synchronous modes and their coexistence with quasi-synchronous and/or asynchronous modes.
Keywords: power grids, synchronous machines, synchronous modes, global and non-local stability, multistability
@article{IVP_2025_33_1_a4,
     author = {V. A. Khramenkov and A. S. Dmitrichev and V. I. Nekorkin},
     title = {Multistability of synchronous modes in a multimachine power grid with a common load and their global and non-local stability},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {38--68},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2025},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2025_33_1_a4/}
}
TY  - JOUR
AU  - V. A. Khramenkov
AU  - A. S. Dmitrichev
AU  - V. I. Nekorkin
TI  - Multistability of synchronous modes in a multimachine power grid with a common load and their global and non-local stability
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2025
SP  - 38
EP  - 68
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2025_33_1_a4/
LA  - ru
ID  - IVP_2025_33_1_a4
ER  - 
%0 Journal Article
%A V. A. Khramenkov
%A A. S. Dmitrichev
%A V. I. Nekorkin
%T Multistability of synchronous modes in a multimachine power grid with a common load and their global and non-local stability
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2025
%P 38-68
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2025_33_1_a4/
%G ru
%F IVP_2025_33_1_a4
V. A. Khramenkov; A. S. Dmitrichev; V. I. Nekorkin. Multistability of synchronous modes in a multimachine power grid with a common load and their global and non-local stability. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 33 (2025) no. 1, pp. 38-68. http://geodesic.mathdoc.fr/item/IVP_2025_33_1_a4/

[1] Zhdanov P. S., Voprosy ustoichivosti elektricheskikh sistem, Energiya, M., 1979, 456 pp.

[2] Venikov V. A., Perekhodnye elektromekhanicheskie protsessy v elektricheskikh sistemakh, Vysshaya shkola, M.

[3] Idelchik V. I., Elektricheskie sistemy i seti, Energoatomizdat, M., 1989, 592 pp.

[4] Kundur P., Balu N. J., Lauby M. G., Power System Stability and Control, McGraw-Hill Education, New York, 1994, 1176 pp.

[5] Sauer P., Pai A., Power System Dynamics and Stability, Englewood Cliffs, Prentice-Hall, 1998, 357 pp.

[6] Anderson P. M., Fouad A. A., Power System Control and Stability, IEEE, Piscataway, NJ, 2003, 672 pp.

[7] Horowitz S. H., Phadke A. G., Henville C. F., Power System Relaying, John Wiley Sons, New York, 2008, 528 pp.

[8] Machowski J., Bialek J., Bumby D., Power System Dynamics: Stability and Control, John Wiley Sons, New York, 2008, 629 pp.

[9] Grainger J. J., Stevenson W. D., Power System Analysis, McGraw-Hill Education, New York, 2016, 787 pp.

[10] Park R. H., “Two-reaction theory of synchronous machines: Generalized method ofanalysis”, Transactions of the American Institute of Electrical Engineers, 48:3 (1929), 716–730 | DOI

[11] Gorev A. A., Perekhodnye protsessy sinkhronnoi mashiny, Gosenergoizdat, M., 1950, 553 pp.

[12] Wiatros-Motyka M., Global Electricity Review 2023, Ember, New York, 2023, 163 pp.

[13] Dobson I., Carreras B. A., Lynch V. E., Newman D. E., “Complex systems analysis of series of blackouts: Cascading failure, critical points, and self-organization”, Chaos, 17:2 (2007), 026103 | DOI

[14] Schäfer B., Witthaut D., Timme M., Latora V., “Dynamically induced cascading failures in power grids”, Nat. Commun, 9:1 (2018), 1975 | DOI

[15] Bialek J. W., “Why has it happened again? Comparison between the UCTE blackout in 2006 and the blackouts of 2003”, IEEE Lausanne Power Tech (Lausanne, Switzerland), 2007, 51–56 | DOI

[16] Li C., Sun Y., Chen X., “Analysis of the blackout in Europe on November 4, 2006”, 2007 International Power Engineering Conference (IPEC 2007), 2007, 939–944

[17] Vleuten E., Lagendijk V., “Interpreting transnational infrastructure vulnerability: European blackout and the historical dynamics of transnational electricity governance”, Energy Policy, 38:4 (2010), 2053–2062 | DOI

[18] Veloza O. P., Santamaria F., “Analysis of major blackouts from 2003 to 2015: classification of incidents and review of main causes”, Electr. J., 29:7 (2016), 42–49 | DOI

[19] Shao Y., Tang T., Yi J., Wang A., “Analysis and lessons of blackout in Turkey power grid on March 31”, AEPS, 40:23 (2016), 9–14 | DOI

[20] Gajduk A., Todorovski M., Kocarev L., “Stability of power grids: An overview”, The European Physical Journal Special Topics, 223:12 (2014), 2387–2409 | DOI

[21] Filatrella G., Nielsen A. H., Pedersen N. F., “Analysis of a power grid using a Kuramoto-like model”, The European Physical Journal B, 61:4 (2008), 485–491

[22] Nitzbon J., Schultz P., Heitzig J., Kurths J., Hellmann F., “Deciphering the imprint of topology on nonlinear dynamical network stability”, New J. Phys., 19:3 (2017), 033029 | DOI

[23] Kim H., Lee S. H., Davidsen J., Son S., “Multistability and variations in basin of attraction in power-grid systems”, New J. Phys., 20:11 (2018), 113006 | DOI

[24] Hellmann F., Schultz P., Jaros P., Levchenko R., Kapitaniak T., Kurths J., Maistrenko Y., “Network-induced multistability through lossy coupling and exotic solitary states”, Nat. Commun, 11:1 (2020) | DOI

[25] Khramenkov V. A., Dmitrichev A. S., Nekorkin V. I., “A new scenario for Braess's paradox in power grids”, Chaos, 32:11 (2022) | DOI

[26] Gupta P. C., Singh P. P., “Chaos, multistability and coexisting behaviours in small-scale grid: Impact of electromagnetic power, random wind energy, periodic load and additive white Gaussian noise”, Pramana, 97:3 (2023) | DOI

[27] Korsak A. J., “On the Question of uniqueness of stable load-flow solutions”, IEEE Transactions on Power Apparatus and Systems, 91:3 (1972), 1093–1100 | DOI

[28] Casazza J. A., “Blackouts: Is the risk increasing?”, Electrical World, 212:4 (1998), 62–64

[29] Janssens N., Kamagate A., “Loop flows in a ring AC power system”, International Journal of Electrical Power Energy Systems, 25:8 (2003), 591–597 | DOI

[30] Coletta T., Delabays R., Adagideli I., Jacquod P., “Topologically protected loop flows in high voltage AC power grids”, New Journal of Physics, 18:10 (2016), 103042 | DOI

[31] Delabays R., Coletta T., Jacquod P., “Multistability of phase-locking and topological winding numbers in locally coupled Kuramoto models on single-loop networks”, Journal of Mathematical Physics, 57:3 (2016), 032701 | DOI

[32] Manik D., Timme M., Witthaut D., “Cycle flows and multistability in oscillatory networks”, Chaos, 27:8 (2017), 083123 | DOI

[33] Delabays R., Jafarpour S., Bullo F., “Multistability and anomalies in oscillator models of lossy power grids”, Nat. Commun, 13:1 (2022), 5238 | DOI

[34] Venkatasubramanian V., Schattler H., Zaborszky J., “Voltage dynamics: study of a generator with voltage control, transmission, and matched MW load”, IEEE Transactions on Automatic Control, 37:11 (1992), 1717–1733

[35] Nguyen H. D., Turitsyn K., “Voltage multistability and pulse emergency control for distribution system with power flow reversal”, IEEE Transactions on Smart Grid, 6:6 (2014), 2985–2996

[36] Balestra C., Kaiser F., Manik D., Witthaut D., “Multistability in lossy power grids and oscillator networks”, Chaos, 29:12 (2019), 123119 | DOI

[37] Khramenkov V. A., Dmitrichev A. S., Nekorkin V. I., “Bistability of operating modes and their switching in a three-machine power grid”, Chaos, 33:10 (2023) | DOI

[38] Kwatny H., Pasrija A., Bahar L., “Static bifurcations in electric power networks: Loss of steady-state stability and voltage collapse”, IEEE Transactions on Circuits and Systems, 33:10 (1986), 981–991 | DOI

[39] Ayasun S., Nwankpa C. O., Kwatny H. G., “Computation of singular and singularity induced bifurcation points of differential-algebraic power system model”, IEEE Transactions on Circuits and Systems I: Regular Papers, 51:8 (2004), 1525–1538 | DOI

[40] Thümler M., Zhang X., Timme M., “Absence of pure voltage instabilities in the third-order model of power grid dynamics”, Chaos, 32:4 (2022), 043105 | DOI

[41] Kalentionok E. V., Ustoichivost elektroenergeticheskikh sistem, Tekhnoperspektiva, Minsk, 2008, 375 pp.

[42] Bergen A. R., Hill D. J., “A structure preserving model for power system stability analysis”, IEEE Transactions on Power Apparatus and Systems, PAS-100:1 (1981), 25–35 | DOI

[43] Nishikawa T., Motter A. E., “Comparative analysis of existing models for power grid synchronization”, New J. Phys., 17:1 (2015), 015012 | DOI

[44] Grzybowski J. M. V., Macau E. E. N., Yoneyama T., “Power-grids as complex networks: Emerging investigations into robustness and stability”, Chaotic, Fractional, and Complex Dynamics: New Insights and Perspectives. Understanding Complex Systems, eds. Edelman M., Macau E., Sanjuan M., Springer, Cham, 2019, 287-–315 | DOI

[45] Kogler R., Plietzsch A., Schultz P., Hellmann F., “Normal form for grid-forming power grid actors”, PRX Energy, 1:1 (2022), 013008

[46] Rohden M., Sorge A., Timme M., Witthaut D., “Self-organized synchronization in decentralized power grids”, Phys. Rev. Lett., 109:6 (2012), 064101

[47] Witthaut D., Timme M., “Braess‘s paradox in oscillator networks, desynchronization and power outage”, New J. Phys., 14:8 (2012), 083036

[48] Fortuna L., Frasca M., Sarra-Fiore A., “A network of oscillators emulating the Italian high-voltage power grid”, International Journal of Modern Physics B, 26:25 (2012), 1246011 | DOI

[49] Lozano S., Buzna L., Diaz-Guilera A., “Role of network topology in the synchronization of power systems”, The European Physical Journal B, 85:7 (2012), 231 | DOI

[50] Motter A. E., Myers S. A., Anghel M., Nishikawa T., “Spontaneous synchrony in power-grid networks”, Nature Physics, 9 (2013), 191–197

[51] Khramenkov V. A., Dmitrichev A. S., Nekorkin V. I., “Dynamics and stability of two power grids with hub cluster topologies”, Cybernetics and physics, 8:1 (2019), 29–99 | DOI

[52] Halekotte L., Feudel U., “Minimal fatal shocks in multistable complex networks”, Scientific Reports, 10:1 (2020), 11783

[53] Arinushkin P. A., Anischenko V. S., “Analiz sinkhronnykh rezhimov raboty tsepochki svyazannykh ostsillyatorov energosetei”, Izvestiya vuzov. Prikladnaya nelineinaya dinamika, 26:3 (2018), 62–77 | DOI

[54] Arinushkin P. A., Anischenko V. S., “Vliyanie vykhodnoi moschnosti generatorov na chastotnye kharakteristiki energoseti v koltsevoi topologii”, Izvestiya vuzov. Prikladnaya nelineinaya dinamika, 27:6 (2019) | DOI

[55] Khramenkov V. A., Dmitrichev A. S., Nekorkin V. I., “Porogovaya ustoichivost sinkhronnogo rezhima energoseti s topologiei khab-klastera”, Izvestiya vuzov. Prikladnaya nelineinaya dinamika, 28:2 (2020), 120–139 | DOI

[56] Arinushkin, P. A., Vadivasova T. E., “Nonlinear damping effects in a simplified power grid model based on coupled Kuramoto-like oscillators with inertia”, Chaos Solitons and Fractals, 152 (2021), 111343 | DOI

[57] Witthaut D., Timme M., “Nonlocal failures in complex supply networks by single link additions”, The European Physical Journal B, 86:9 (2013), 377 | DOI

[58] Schafer B., Pesch T., Manik D., Gollenstede J., Lin G., Beck H.-P., Witthaut D., Timme M., “Understanding Braess’ paradox in power grids”, Nat. Commun, 13:1 (2022), 5396 | DOI

[59] Witthaut D., Hellmann F., Kurths J., Kettemann S., “Collective nonlinear dynamics and self-organization in decentralized power grids”, Rev. Mod. Phys., 94:1 (2022), 015005 | DOI

[60] Dörfler F., Bullo F., “On the critical coupling for Kuramoto oscillators”, SIAM Journal on Applied Dynamical Systems, 10:3 (2011), 1070–1099 | DOI

[61] Dörfler F., Bullo F., “Synchronization and transient stability in power networks and non-uniform Kuramoto oscillators”, SIAM Journal on Control and Optimization, 50:3 (2012), 1616–1642 | DOI

[62] Dörfler F., Chertkov M., Bullo F., “Synchronization in complex oscillator networks and smart grids”, Proc. Natl. Acad. Sci. U.S.A, 110:6 (2013) | DOI

[63] Khramenkov V. A., Dmitrichev A. S., Nekorkin V. I., “Partial stability criterion for a heterogeneous power grid with hub structures”, Chaos, Solitons and Fractals, 152 (2021), 111373 | DOI

[64] Molnar F., Nishikawa T., Motter A. E., “Asymmetry underlies stability in power grids”, Nat. Commun, 12:1 (2021), 1457 | DOI

[65] Menck P. J., Heitzig J., Marwan N., Kurths J., “How basin stability complements the linear-stability paradigm”, Nat. Phys., 9:2 (2013) | DOI

[66] Menck P. J., Heitzig J., Kurths J., Schellnhuber J. H., “How dead ends undermine power grid stability”, Nat. Commun, 5:1 (2014), 3969

[67] Hellmann F., Schultz P., Grabow C., Heitzig J., “Survivability of deterministic dynamical systems”, Sci. Rep., 6:1 (2016), 29654 | DOI

[68] Klinshov V. V., Nekorkin V. I., Kurths J., “Stability threshold approach for complex dynamical systems”, New J. Phys., 18:1 (2015), 013004 | DOI

[69] Mitra C., Kittel T., Choudhary A., Kurths J., Donner R. V., “Recovery time after localized perturbations in complex dynamical networks”, New J. Phys., 19:10 (2017), 103004 | DOI

[70] Kim H., Lee M. J., Lee S. H., Son S.-W., “On structural and dynamical factors determining the integrated basin instability of power-grid nodes”, Chaos, 29:10 (2019), 103132 | DOI

[71] Kim H., “How modular structure determines operational resilience of power grids”, New J. Phys., 23:12 (2019), 129501 | DOI

[72] Klinshov V. V., Kirillov S. Yu., Kurths J., Nekorkin V. I., “Interval stability for complex systems”, New J. Phys., 20:4 (2018), 043040 | DOI

[73] Bessonov L. A., Teoreticheskie osnovy elektrotekhniki, Vysshaya shkola, M., 1996, 587 pp.

[74] Zhang X., Rehtanz C., Pal B. C., Flexible AC transmission systems: modelling and control, Springer, Berlin, Heidelberg, 2012, 546 pp.

[75] Gantmakher F. R., Teoriya matrits, Nauka, M., 1966, 576 pp.

[76] Gray R. M., “Toeplitz and circulant matrices: a review”, Foundations and Trends in Communications and Information Theory, 2:3 (2006) | DOI

[77] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989, 655 pp.