Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2025_33_1_a3, author = {V. I. Ponomarenko and M. D. Prokhorov}, title = {Reconstruction of self-oscillating systems with delay time modulation}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {27--37}, publisher = {mathdoc}, volume = {33}, number = {1}, year = {2025}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2025_33_1_a3/} }
TY - JOUR AU - V. I. Ponomarenko AU - M. D. Prokhorov TI - Reconstruction of self-oscillating systems with delay time modulation JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2025 SP - 27 EP - 37 VL - 33 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2025_33_1_a3/ LA - ru ID - IVP_2025_33_1_a3 ER -
V. I. Ponomarenko; M. D. Prokhorov. Reconstruction of self-oscillating systems with delay time modulation. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 33 (2025) no. 1, pp. 27-37. http://geodesic.mathdoc.fr/item/IVP_2025_33_1_a3/
[1] Erneux T., Applied Delay Differential Equations, Springer-Verlag, New York, 2009, 204 pp. | DOI
[2] Kuang Y., Delay Differential Equations with Applications in Population Dynamics, Academic Press, Boston, 1993, 398 pp.
[3] Farmer J., “Chaotic attractors of an infinite-dimensional dynamical system”, Physica D: Nonlinear Phenomena, 4:3 (1982), 366–393 | DOI
[4] Senthilkumar D. V., Lakshmanan M., “Delay time modulation induced oscillating synchronization and intermittent anticipatory/lag and complete synchronizations in time-delay nonlinear dynamical systems”, Chaos, 17:1 (2007) | DOI
[5] Lazarus L., Davidow M., Rand R., “Dynamics of an oscillator with delay parametric excitation”, Int. J. Nonlinear Mech, 78 (2016), 66-71 | DOI
[6] Grigoreva E. V., Kaschenko S. A., “Kvaziperiodicheskie i khaoticheskie relaksatsionnye kolebaniya v modeli lazera s peremennym zapazdyvaniem v tsepi obratnoi svyazi”, Doklady Akademii Nauk, 474:2 (2017), 159-163 | DOI
[7] Müller D., Otto A., Radons G., “Laminar chaos”, Phys. Rev. Lett., 120 (2018), 084102 | DOI
[8] Kulminskii D. D., Ponomarenko V. I., Prokhorov M. D., “Laminarnyi khaos v generatore s zapazdyvayuschei obratnoi svyazyu”, Pisma v zhurnal tekhnicheskoi fiziki, 46 (2020), 16-19 | DOI
[9] Müller-Bender D., Otto A., Radons G., “Resonant Doppler effect in systems with variable delay”, Phil. Trans. R. Soc. A, 377:2153 (2019) | DOI
[10] Müller-Bender D., Radons G., “Laminar chaos in systems with quasiperiodic delay”, Physical Review E, 107:1 (2023) | DOI
[11] Hart J. D., Roy R., Müller-Bender D., Otto A., Radons G., “Laminar chaos in experiments: Nonlinear systems with time-varying delays and noise”, Physical Review Letters, 123:15 (2019) | DOI
[12] Jüngling T., Stemler T., Small M., “Laminar chaos in nonlinear electronic circuits with delay clock modulation”, Phys. Rev. E, 101 (2020) | DOI
[13] Kulminskii D. D., Ponomarenko V. I., Prokhorov M. D., “Laminarnyi khaos v svyazannykh sistemakh s zapazdyvaniem”, Pisma v ZhTF, 48:4 (2022), 11-14 | DOI
[14] Ponomarenko V. I., Lapsheva E. E., Kurbako A. V., Prokhorov M. D., “Laminarnyi khaos v eksperimentalnoi sisteme s kvaziperiodicheskoi modulyatsiei vremeni zapazdyvaniya”, Pisma v ZhTF, 50:11 (2024), 34-37
[15] Bünner M. J., Ciofini M., Giaquinta A., Hegger R., Kantz H., Meucci R., Politi A., “Reconstruction of systems with delayed feedback: II. Application”, Eur. Phys. J. D, 10 (2000), 177–187 | DOI
[16] Udaltsov V. S., Goedgebuer J.-P., Larger L., Cuenot J.-B., Levy P., Rhodes W. T., “Cracking chaos-based encryption systems ruled by nonlinear time delay differential equations”, Phys. Lett. A, 308:1 (2003), 54–60 | DOI
[17] Prokhorov M. D., Ponomarenko V. I., Karavaev A. S., Bezruchko B. P., “Reconstruction of time-delayed feedback systems from time series”, Physica D, 203:3–4 (2005), 209–223 | DOI
[18] Bezruchko B. P., Karavaev A. S., Ponomarenko V. I., Prokhorov M. D., “Reconstruction of time-delay systems from chaotic time series”, Physical Review E, 64:5 (2001) | DOI
[19] Müller-Bender D., Otto A., Radons G., Hart J. D., Roy R., “Laminar chaos in experiments and nonlinear delayed Langevin equations: A time series analysis toolbox for the detection of laminar chaos”, Physical Review E, 101:3 (2020) | DOI