Reconstruction of self-oscillating systems with delay time modulation
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 33 (2025) no. 1, pp. 27-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of our research is to study the possibility of reconstruction from time series the self-oscillating systems with variable time delay, demonstrating regimes of turbulent and laminar chaos. Methods. The object of study is self-oscillating systems described by delay-differential equations, in which the delay time is modulated by an external periodic signal. The possibility of estimating the parameters of systems with delay time modulation from their time series is considered using the known method for reconstructing systems with constant delay time, which is based on statistical analysis of time intervals between all possible pairs of extrema in time series. A new method for estimating the parameters of systems with variable delay time is proposed, based on statistical analysis of time intervals between two successive extrema in time series. Results. It is shown that in some cases the known methods for reconstructing systems with constant delay time are also effective for reconstructing systems with varying delay time. With their help, one can estimate the mean delay time and recove the nonlinear function of the system. The proposed method, aimed at application to time-delay systems with delay time modulation, allows one to estimate the frequency and amplitude of delay time modulation. Conclusion. The obtained results are of interest to various scientific disciplines that study systems with variable delay times based on their time series.
Keywords: systems with delay time modulation, laminar chaos, reconstruction of systems from time series, statistics of extrema
@article{IVP_2025_33_1_a3,
     author = {V. I. Ponomarenko and M. D. Prokhorov},
     title = {Reconstruction of self-oscillating systems with delay time modulation},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {27--37},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2025},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2025_33_1_a3/}
}
TY  - JOUR
AU  - V. I. Ponomarenko
AU  - M. D. Prokhorov
TI  - Reconstruction of self-oscillating systems with delay time modulation
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2025
SP  - 27
EP  - 37
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2025_33_1_a3/
LA  - ru
ID  - IVP_2025_33_1_a3
ER  - 
%0 Journal Article
%A V. I. Ponomarenko
%A M. D. Prokhorov
%T Reconstruction of self-oscillating systems with delay time modulation
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2025
%P 27-37
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2025_33_1_a3/
%G ru
%F IVP_2025_33_1_a3
V. I. Ponomarenko; M. D. Prokhorov. Reconstruction of self-oscillating systems with delay time modulation. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 33 (2025) no. 1, pp. 27-37. http://geodesic.mathdoc.fr/item/IVP_2025_33_1_a3/

[1] Erneux T., Applied Delay Differential Equations, Springer-Verlag, New York, 2009, 204 pp. | DOI

[2] Kuang Y., Delay Differential Equations with Applications in Population Dynamics, Academic Press, Boston, 1993, 398 pp.

[3] Farmer J., “Chaotic attractors of an infinite-dimensional dynamical system”, Physica D: Nonlinear Phenomena, 4:3 (1982), 366–393 | DOI

[4] Senthilkumar D. V., Lakshmanan M., “Delay time modulation induced oscillating synchronization and intermittent anticipatory/lag and complete synchronizations in time-delay nonlinear dynamical systems”, Chaos, 17:1 (2007) | DOI

[5] Lazarus L., Davidow M., Rand R., “Dynamics of an oscillator with delay parametric excitation”, Int. J. Nonlinear Mech, 78 (2016), 66-71 | DOI

[6] Grigoreva E. V., Kaschenko S. A., “Kvaziperiodicheskie i khaoticheskie relaksatsionnye kolebaniya v modeli lazera s peremennym zapazdyvaniem v tsepi obratnoi svyazi”, Doklady Akademii Nauk, 474:2 (2017), 159-163 | DOI

[7] Müller D., Otto A., Radons G., “Laminar chaos”, Phys. Rev. Lett., 120 (2018), 084102 | DOI

[8] Kulminskii D. D., Ponomarenko V. I., Prokhorov M. D., “Laminarnyi khaos v generatore s zapazdyvayuschei obratnoi svyazyu”, Pisma v zhurnal tekhnicheskoi fiziki, 46 (2020), 16-19 | DOI

[9] Müller-Bender D., Otto A., Radons G., “Resonant Doppler effect in systems with variable delay”, Phil. Trans. R. Soc. A, 377:2153 (2019) | DOI

[10] Müller-Bender D., Radons G., “Laminar chaos in systems with quasiperiodic delay”, Physical Review E, 107:1 (2023) | DOI

[11] Hart J. D., Roy R., Müller-Bender D., Otto A., Radons G., “Laminar chaos in experiments: Nonlinear systems with time-varying delays and noise”, Physical Review Letters, 123:15 (2019) | DOI

[12] Jüngling T., Stemler T., Small M., “Laminar chaos in nonlinear electronic circuits with delay clock modulation”, Phys. Rev. E, 101 (2020) | DOI

[13] Kulminskii D. D., Ponomarenko V. I., Prokhorov M. D., “Laminarnyi khaos v svyazannykh sistemakh s zapazdyvaniem”, Pisma v ZhTF, 48:4 (2022), 11-14 | DOI

[14] Ponomarenko V. I., Lapsheva E. E., Kurbako A. V., Prokhorov M. D., “Laminarnyi khaos v eksperimentalnoi sisteme s kvaziperiodicheskoi modulyatsiei vremeni zapazdyvaniya”, Pisma v ZhTF, 50:11 (2024), 34-37

[15] Bünner M. J., Ciofini M., Giaquinta A., Hegger R., Kantz H., Meucci R., Politi A., “Reconstruction of systems with delayed feedback: II. Application”, Eur. Phys. J. D, 10 (2000), 177–187 | DOI

[16] Udaltsov V. S., Goedgebuer J.-P., Larger L., Cuenot J.-B., Levy P., Rhodes W. T., “Cracking chaos-based encryption systems ruled by nonlinear time delay differential equations”, Phys. Lett. A, 308:1 (2003), 54–60 | DOI

[17] Prokhorov M. D., Ponomarenko V. I., Karavaev A. S., Bezruchko B. P., “Reconstruction of time-delayed feedback systems from time series”, Physica D, 203:3–4 (2005), 209–223 | DOI

[18] Bezruchko B. P., Karavaev A. S., Ponomarenko V. I., Prokhorov M. D., “Reconstruction of time-delay systems from chaotic time series”, Physical Review E, 64:5 (2001) | DOI

[19] Müller-Bender D., Otto A., Radons G., Hart J. D., Roy R., “Laminar chaos in experiments and nonlinear delayed Langevin equations: A time series analysis toolbox for the detection of laminar chaos”, Physical Review E, 101:3 (2020) | DOI