Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2025_33_1_a2, author = {I. M. Moiseenko and D. V. Fateev and V. V. Popov}, title = {Anisotropy and amplification of terahertz electromagnetic response enabled by direct electric current in graphene}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {19--26}, publisher = {mathdoc}, volume = {33}, number = {1}, year = {2025}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2025_33_1_a2/} }
TY - JOUR AU - I. M. Moiseenko AU - D. V. Fateev AU - V. V. Popov TI - Anisotropy and amplification of terahertz electromagnetic response enabled by direct electric current in graphene JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2025 SP - 19 EP - 26 VL - 33 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2025_33_1_a2/ LA - ru ID - IVP_2025_33_1_a2 ER -
%0 Journal Article %A I. M. Moiseenko %A D. V. Fateev %A V. V. Popov %T Anisotropy and amplification of terahertz electromagnetic response enabled by direct electric current in graphene %J Izvestiya VUZ. Applied Nonlinear Dynamics %D 2025 %P 19-26 %V 33 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVP_2025_33_1_a2/ %G ru %F IVP_2025_33_1_a2
I. M. Moiseenko; D. V. Fateev; V. V. Popov. Anisotropy and amplification of terahertz electromagnetic response enabled by direct electric current in graphene. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 33 (2025) no. 1, pp. 19-26. http://geodesic.mathdoc.fr/item/IVP_2025_33_1_a2/
[1] Bandurin D. A., Svintsov D., Gayduchenko I., Xu S. G., Principi A., Moskotin M., Tretyakov I., Yagodkin D., Zhukov S., Taniguchi T., Watanabe K., Grigorieva I. V., Polini M., Goltsman G. N., Geim A. K., Fedorov G., “Resonant terahertz detection using graphene plasmons”, Nat. Commun, 9 (2018), 5392 | DOI
[2] Abidi E., Khan A., Delgado-Notario J. A., Clericó V., Calvo-Gallego J, Taniguchi T., Watanabe K., Otsuji T., Velázquez J. E., Meziani Y. M., “Terahertz detection by asymmetric dual grating gate bilayer graphene fets with integrated bowtie antenna”, Nanomaterials, 14:4 (2024), 383 | DOI
[3] Boubanga-Tombet S., Knap W., Yadav D., Satou A., But D. B., Popov V. V., Gorbenko I. V., Kachorovskii V., and Otsuji T., “Room-temperature amplification of terahertz radiation by grating-gate graphene structures”, Physical Review X, 10:3 (2020), 031004 | DOI
[4] Cosme P., Terças H., “Terahertz laser combs in graphene field-effect transistors”, ACS Photonics, 7:6 (2020), 1375–1381 | DOI
[5] Xiao Z., Jiang Z., Wang X., Cui Z., “Switchable polarization converter with switching function based on graphene and vanadium dioxide”, Journal of Electronic Materials, 52:3 (2023), 1968–1976 | DOI
[6] Polischuk O. V., Melnikova V. S., Popov V. V., “Giant cross-polarization conversion of terahertz radiation by plasmons in an active graphene metasurface”, Applied Physics Letters, 109:13 (2016) | DOI
[7] Guo T., Argyropoulos C., “Broadband polarizers based on graphene metasurfaces”, Optics letters, 41:23 (2016), 5592–5595 | DOI
[8] Moiseenko I. M., Fateev D. V., Popov V. V., “Dissipative drift instability of plasmons in a single-layer graphene”, Physical Review B, 109:4 (2024), L041401 | DOI
[9] Narozhny B. N., “Electronic hydrodynamics in graphene”, Annals of Physics, 411 (2019), 167979 | DOI
[10] Bandurin D. A., Torre I., Krishna Kumar R., Ben Shalom M., Tomadin A., Principi A., Auton G. H., Khestanova E., Novoselov K. S., Grigorieva I. V., Ponomarenko L. A., Geim A. K., Polini M., “Negative local resistance caused by viscous electron backflow in graphene”, Science, 351:6277 (2016), 1055–1058 | DOI
[11] Kumar C., Birkbeck J., Sulpizio J. A., Perello D., Taniguchi T., Watanabe K., Reuven O., Scaffidi T., Stern Ady, Geim A. K., Ilani S., “Imaging hydrodynamic electrons flowing without Landauer–Sharvin resistance”, Nature, 609:7926 (2022), 276–281 | DOI
[12] Svintsov D., Vyurkov V., Ryzhii V., and Otsuji T., “Hydrodynamic electron transport and nonlinear waves in graphene”, Phys. Rev. B, 88 (2013), 245444 | DOI