Groups of basic automorphisms of chaotic Cartan foliations with Eresmann connection
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 6, pp. 897-907.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of the work is to study the groups of basic automorphisms of chaotic Cartan foliations with Ehresmann connection. Cartan foliations form a category where automorphisms preserve not only the foliation, but also its transverse Cartan geometry. The group of basic automorphisms of a foliation is the quotient group of the group of all automorphisms of this foliation by the normal subgroup of leaf automorphisms with respect to which each leaf is invariant. Cartan foliations include such wide classes of foliations as pseudo-Riemannian, Lorentzian, and foliations with transversal affine connection. No restrictions are imposed on the dimension of either the foliation or the foliated manifold. Compactness of the foliated manifold is not assumed. Methods. The proof of the structure theorem for chaotic Cartan foliations is based on the application of the foliated bundle construction, commonly used in the theory of foliations with transverse geometries. Results. The main result of this paper is the theorem stating that the group of basic automorphisms of any chaotic Cartan foliation with Ehresmann connection admits the structure of a Lie group and finding estimates for the dimension of this group. In particular, it is proved that if the set of closed leaves is countable, then the group of basic automorphisms of such a foliation is countable. Conclusion. In this paper, we prove a criterion according to which the chaoticity of a Cartan foliation of type $(G, H)$ is equivalent to the chaoticity of a locally free action of the group $H$ on the associated parallelizable manifold. Thus, the problem of the existence of chaos in Cartan foliations with Ehresmann connection reduces to the same problem for locally free actions of a Lie group on parallelizable manifolds.  
Keywords: foliation, Ehresmann connection for foliation, chaotic foliation, basic automorphism of a foliation
@article{IVP_2024_32_6_a9,
     author = {N. I. Zhukova and K. I. Sheina},
     title = {Groups of basic automorphisms of chaotic {Cartan} foliations with {Eresmann} connection},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {897--907},
     publisher = {mathdoc},
     volume = {32},
     number = {6},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a9/}
}
TY  - JOUR
AU  - N. I. Zhukova
AU  - K. I. Sheina
TI  - Groups of basic automorphisms of chaotic Cartan foliations with Eresmann connection
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2024
SP  - 897
EP  - 907
VL  - 32
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a9/
LA  - ru
ID  - IVP_2024_32_6_a9
ER  - 
%0 Journal Article
%A N. I. Zhukova
%A K. I. Sheina
%T Groups of basic automorphisms of chaotic Cartan foliations with Eresmann connection
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2024
%P 897-907
%V 32
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a9/
%G ru
%F IVP_2024_32_6_a9
N. I. Zhukova; K. I. Sheina. Groups of basic automorphisms of chaotic Cartan foliations with Eresmann connection. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 6, pp. 897-907. http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a9/

[1] Kobayasi Sh., Gruppy preobrazovanii v differentsialnoi geometrii, Nauka, M., 1986, 223 pp. | MR

[2] Sheina K. I., Zhukova N. I., “The groups of basic automorphisms of complete cartan foliations”, Lobachevskii J. Math., 39 (2018), 271–280 | DOI | MR | Zbl

[3] Leslie J., “A remark on the group of automorphisms of a foliation having a denseleaf”, J. Diff. Geom, 7:3–4 (1972), 597–601 | DOI | MR | Zbl

[4] Belko I. V., “Affinnye preobrazovaniya transversalnoi proektiruemoi svyaznosti na mnogoobraziiso sloeniem”, Mat. sbornik, 117:2 (1982), 181–195 | MR | Zbl

[5] Hector J., Macias-Virgos E., “Diffeological groups”, Reseach and Exposition in Math., 25 (2002), 247–260 | MR | Zbl

[6] Blumenthal R. A., Hebda J. J., “Ehresmann connection for foliations”, Indiana Univ. Math. J., 33:4 (1984), 597–611 | DOI | MR | Zbl

[7] Bazaikin Y. V., Galaev A. S., Zhukova N. I., “Chaos in Cartan foliations”, Chaos, 30:10, 103116 (2020), 1–9 | DOI | MR

[8] Churchill R. C., “On defining chaos in the absence of time”, Deterministic Chaos in General Relativity, NATO Science Series, B 332, eds. Hobill D., Burd A., Coley A., Springer, Boston, 1994, 107–112 | DOI | MR

[9] Devaney R. L., An Introduction to Chaotic Dynamical Systems, The Benjamin/ Cummings Publishing Co., Inc., Menlo Park, 1986, 320 pp. | MR | Zbl

[10] Zhukova N. I., “Chaotic foliations with Ehresmann connection”, Journal of Geometry and Physics, 199 (2024) | DOI | MR | Zbl

[11] Zhukova N. I., “Minimalnye mnozhestva kartanovykh sloenii”, Trudy MIAN, 256:1 (2007), 115–147 | DOI | MR | Zbl

[12] Molino P., Riemannian Foliations, Progress in Mathematics, 73, Birkhauser, Boston, 1988, 339 pp. | MR | Zbl

[13] Kobayashi Sh., Nomizu K., Foundations of differential geometry, v. I, Interscience publ., New York–London, 1969 | MR | Zbl

[14] Hermann R., “The differential geometry of foliations”, Ann. of Math., 72 (1960) | DOI | MR | Zbl

[15] Zhukova N. I., “Struktura rimanovykh sloenii so svyaznostyu Eresmana”, Zhurnal SVMO, 20:4 (2018), 395–407 | Zbl