Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2024_32_6_a9, author = {N. I. Zhukova and K. I. Sheina}, title = {Groups of basic automorphisms of chaotic {Cartan} foliations with {Eresmann} connection}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {897--907}, publisher = {mathdoc}, volume = {32}, number = {6}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a9/} }
TY - JOUR AU - N. I. Zhukova AU - K. I. Sheina TI - Groups of basic automorphisms of chaotic Cartan foliations with Eresmann connection JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2024 SP - 897 EP - 907 VL - 32 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a9/ LA - ru ID - IVP_2024_32_6_a9 ER -
%0 Journal Article %A N. I. Zhukova %A K. I. Sheina %T Groups of basic automorphisms of chaotic Cartan foliations with Eresmann connection %J Izvestiya VUZ. Applied Nonlinear Dynamics %D 2024 %P 897-907 %V 32 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a9/ %G ru %F IVP_2024_32_6_a9
N. I. Zhukova; K. I. Sheina. Groups of basic automorphisms of chaotic Cartan foliations with Eresmann connection. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 6, pp. 897-907. http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a9/
[1] Kobayasi Sh., Gruppy preobrazovanii v differentsialnoi geometrii, Nauka, M., 1986, 223 pp. | MR
[2] Sheina K. I., Zhukova N. I., “The groups of basic automorphisms of complete cartan foliations”, Lobachevskii J. Math., 39 (2018), 271–280 | DOI | MR | Zbl
[3] Leslie J., “A remark on the group of automorphisms of a foliation having a denseleaf”, J. Diff. Geom, 7:3–4 (1972), 597–601 | DOI | MR | Zbl
[4] Belko I. V., “Affinnye preobrazovaniya transversalnoi proektiruemoi svyaznosti na mnogoobraziiso sloeniem”, Mat. sbornik, 117:2 (1982), 181–195 | MR | Zbl
[5] Hector J., Macias-Virgos E., “Diffeological groups”, Reseach and Exposition in Math., 25 (2002), 247–260 | MR | Zbl
[6] Blumenthal R. A., Hebda J. J., “Ehresmann connection for foliations”, Indiana Univ. Math. J., 33:4 (1984), 597–611 | DOI | MR | Zbl
[7] Bazaikin Y. V., Galaev A. S., Zhukova N. I., “Chaos in Cartan foliations”, Chaos, 30:10, 103116 (2020), 1–9 | DOI | MR
[8] Churchill R. C., “On defining chaos in the absence of time”, Deterministic Chaos in General Relativity, NATO Science Series, B 332, eds. Hobill D., Burd A., Coley A., Springer, Boston, 1994, 107–112 | DOI | MR
[9] Devaney R. L., An Introduction to Chaotic Dynamical Systems, The Benjamin/ Cummings Publishing Co., Inc., Menlo Park, 1986, 320 pp. | MR | Zbl
[10] Zhukova N. I., “Chaotic foliations with Ehresmann connection”, Journal of Geometry and Physics, 199 (2024) | DOI | MR | Zbl
[11] Zhukova N. I., “Minimalnye mnozhestva kartanovykh sloenii”, Trudy MIAN, 256:1 (2007), 115–147 | DOI | MR | Zbl
[12] Molino P., Riemannian Foliations, Progress in Mathematics, 73, Birkhauser, Boston, 1988, 339 pp. | MR | Zbl
[13] Kobayashi Sh., Nomizu K., Foundations of differential geometry, v. I, Interscience publ., New York–London, 1969 | MR | Zbl
[14] Hermann R., “The differential geometry of foliations”, Ann. of Math., 72 (1960) | DOI | MR | Zbl
[15] Zhukova N. I., “Struktura rimanovykh sloenii so svyaznostyu Eresmana”, Zhurnal SVMO, 20:4 (2018), 395–407 | Zbl