Spatial dynamics in the family of sixth-order differential equations from the theory of partial formation
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 6, pp. 878-896.

Voir la notice de l'article provenant de la source Math-Net.Ru

Topic of the paper. Bounded stationary (i.e. independent in time) spatially one-dimensional solutions of a quasilinear parabolic PDE are studied on the whole real line. Its stationary solutions are described by a nonlinear ODE of the sixth order of the Euler–Lagrange–Poisson type and therefore can be transformed to the Hamiltonian system with three degrees of freedom being in addition reversible with respect two linear involutions. The system has three symmetric equilibria, two of them are hyperbolic in some region of the parameter plane. Goal of the paper. In this paper we, combining methods of dynamical systems theory and numerical simulations, investigate the orbit behavior near the symmetric heteroclinic connection based on these equilibria. It was found both simple (periodic) and complicated orbit behavior. To this end we use the theorem on a global center manifold near the heteroclinic connection. For the third symmetric equilibrium at the origin we found the region in the parameter plane where this equilibrium is of the saddle-focus-center type and found the existence of its homoclinic orbits, long-periodic orbits near homoclinic orbits and orbits with complicated structure.
Keywords: stationary solutions, Euler–Lagrange–Poisson equation, Hamiltonian system, equilibrium state, saddle, saddlefocus-center, heteroclinic connection, homoclinic orbit, global center invariant manifold, complicated dynamics
@article{IVP_2024_32_6_a8,
     author = {N. E. Kulagin and L. M. Lerman},
     title = {Spatial dynamics in the family of sixth-order differential equations from the theory of partial formation},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {878--896},
     publisher = {mathdoc},
     volume = {32},
     number = {6},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a8/}
}
TY  - JOUR
AU  - N. E. Kulagin
AU  - L. M. Lerman
TI  - Spatial dynamics in the family of sixth-order differential equations from the theory of partial formation
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2024
SP  - 878
EP  - 896
VL  - 32
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a8/
LA  - ru
ID  - IVP_2024_32_6_a8
ER  - 
%0 Journal Article
%A N. E. Kulagin
%A L. M. Lerman
%T Spatial dynamics in the family of sixth-order differential equations from the theory of partial formation
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2024
%P 878-896
%V 32
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a8/
%G ru
%F IVP_2024_32_6_a8
N. E. Kulagin; L. M. Lerman. Spatial dynamics in the family of sixth-order differential equations from the theory of partial formation. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 6, pp. 878-896. http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a8/

[1] Bates P. W., Fife P. C., Gardner R. A., Jones C. K. R. T., “The existence of traveling wave solutions of a generalized phase-field model”, SIAM J. Math. Anal, 28:1 (1997), 60–93 | DOI | MR | Zbl

[2] Caginalp G., Fife P., “Higher-order phase field models and detailed anisotropy”, Phys. Rev. B, 34 (1986), 4940–4943 | DOI | MR

[3] Tersian S., Shaparova Yu., “Periodic and homoclinic solutions of somesemilinear sixth-order differential equations”, J. Math. Analysis Appl., 272 (2002), 223–239 | DOI | MR | Zbl

[4] Peletier L. A., Troy W. C., Van der Vorst R. C. A. M., “Stationary solutions ofa fourth-order nonlinear diffusion equation”, Differential Equations, 31:2 (1995), 301–314 | MR | Zbl

[5] Arnold V. I., Kozlov V. V., Neishtadt A. I., “Matematicheskie aspekty klassicheskoii nebesnoi mekhaniki”, Itogi nauki i tekhniki, 3 | MR

[6] Koltsova O. Yu., Lerman L. M., “Families of transverse Poincaré homoclinicorbits in $2N$-dimensional Hamiltonian systems close to the system with a loop toa saddle-center”, Intern. J. Bifurcation Chaos, 6:6 (1996), 991–1006 | DOI | MR | Zbl

[7] Shilnikov L. P., “K voprosu o strukture rasshirennoi okrestnosti grubogo sostoyaniyaravnovesiya tipa sedlo-fokus”, Matem. sb, 81:1 (1970), 92-103 | Zbl

[8] Kulagin N. E., Lerman L. M., Trifonov K. N., “Twin heteroclinic connections ofreversible systems”, Regular and Chaotic Dynamics, 29:1,40–64 (2024) | DOI | MR | Zbl

[9] Vanderbauwhede A., Fiedler B., “Homoclinic period blow-up in reversible andconservative systems”, Z. Angew. Math. Phys., 43 (1992), 292-318 | DOI | MR | Zbl

[10] Ibañéz S., Rodrigues A., “On the dynamics near a homoclinic networkto a bifocus: Switching and horseshoes”, Int. J. of Bifurc. and Chaos, 25:11 (2015), 1530030 | DOI | MR | Zbl

[11] Galin D. M., “Versalnye deformatsii lineinykh gamiltonovykh sistem”, Trudy seminaraim. I. G. Petrovskogo, 1 (1975), 63–74 | Zbl

[12] Gaivão J. P., Gelfreich V., “Splitting of separatrices for the Hamiltonian-Hopf bifurcation with the Swift–Hohenberg equation as an example”, Nonlinearity, 24:3 (2011), 677–-698 | DOI | MR | Zbl

[13] Glebsky L. Yu., Lerman L. M., “On small stationary localized solutionsfor the generalized 1-D Swift-Hohenberg equation”, Chaos: Interdisc. J Nonlin. Sci., 5:2 (1995), 424–431 | DOI | MR | Zbl

[14] van der Meer J.-C., The Hamiltonian Hopf Bifurcation, Springer-Verlag, Vol 1160 of LectureNotes in Mathematics Berlin, 1985, 115 pp. | DOI | MR | Zbl

[15] Iooss G., Pérouéme M. C., “Perturbed homoclinic solutions in reversible 1:1resonance vector fields”, J. Diff. Equat, 102 (1993), 62–88 | DOI | MR | Zbl

[16] Homburg A. J., “Global aspects of homoclinic bifurcations ofvector fields”, Memoirs of AMS, 121 (1996), 578 | DOI | MR

[17] Sandstede B., “Center manifolds for homoclinic solutions”, J. Dyn. Differ.Equ, 12:3 (2000), 449–510 | DOI | MR | Zbl

[18] Turaev D. V., “Ob odnom sluchae bifurkatsii kontura, obrazovannogo gomoklinicheskimi krivymi sedla”, Metody kachestvennoi teorii differentsialnykh uravnenii, ed. E. A. Leontovich-Andronov, Gorkovskii gosuniversitet, Gorkii, 1984, 162–175 | MR

[19] Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L., Metody kachestvennoi teorii v nelineinoi dinamike, v. 1, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 2004

[20] Lerman L., “Homo- and heteroclinic orbits, hyperbolic subsets in a one-parameter unfolding of a Hamiltonian system with heteroclinic contour with two saddle-foci”, Regul. Chaotic Dynamics, 2:3-4 (1997), 139–155 | MR | Zbl

[21] Belyakov L. A., Shilnikov L. P., “Gomoklinicheskie krivye i slozhnye uedinennye volny”, Metody kachestvennoi teorii differentsialnykh uravnenii, ed. E. A. Leontovich-Andronova, Gorkovskii gosuniversitet, Gorkii, 1985, 22–35 | MR | Zbl

[22] Devaney R., “Homoclinic orbits in Hamiltonian systems”, J. Diff. Equat, 21 (1976), 431–439 | DOI | MR

[23] Lerman L. M., “Complex dynamics and bifurcations in Hamiltoniansystems having the transversal homoclinic orbit to a saddle-focus”, Chaos: Interdisc. J. Nonlin. Sci., 1:2 (1991), 174–180 | DOI | MR | Zbl

[24] Lerman L., “Dynamical phenomena near a saddle-focus homoclinic connection in a Hamiltonian system”, J. Stat. Physics, 101:1–2 (2000), 357–372 | DOI | MR | Zbl

[25] Turaev D. V., “On dimension of non-local bifurcation problems”, Int. J. Bif. Chaos, 6:5 (1996), 919–948 | DOI | MR | Zbl