Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2024_32_6_a8, author = {N. E. Kulagin and L. M. Lerman}, title = {Spatial dynamics in the family of sixth-order differential equations from the theory of partial formation}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {878--896}, publisher = {mathdoc}, volume = {32}, number = {6}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a8/} }
TY - JOUR AU - N. E. Kulagin AU - L. M. Lerman TI - Spatial dynamics in the family of sixth-order differential equations from the theory of partial formation JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2024 SP - 878 EP - 896 VL - 32 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a8/ LA - ru ID - IVP_2024_32_6_a8 ER -
%0 Journal Article %A N. E. Kulagin %A L. M. Lerman %T Spatial dynamics in the family of sixth-order differential equations from the theory of partial formation %J Izvestiya VUZ. Applied Nonlinear Dynamics %D 2024 %P 878-896 %V 32 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a8/ %G ru %F IVP_2024_32_6_a8
N. E. Kulagin; L. M. Lerman. Spatial dynamics in the family of sixth-order differential equations from the theory of partial formation. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 6, pp. 878-896. http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a8/
[1] Bates P. W., Fife P. C., Gardner R. A., Jones C. K. R. T., “The existence of traveling wave solutions of a generalized phase-field model”, SIAM J. Math. Anal, 28:1 (1997), 60–93 | DOI | MR | Zbl
[2] Caginalp G., Fife P., “Higher-order phase field models and detailed anisotropy”, Phys. Rev. B, 34 (1986), 4940–4943 | DOI | MR
[3] Tersian S., Shaparova Yu., “Periodic and homoclinic solutions of somesemilinear sixth-order differential equations”, J. Math. Analysis Appl., 272 (2002), 223–239 | DOI | MR | Zbl
[4] Peletier L. A., Troy W. C., Van der Vorst R. C. A. M., “Stationary solutions ofa fourth-order nonlinear diffusion equation”, Differential Equations, 31:2 (1995), 301–314 | MR | Zbl
[5] Arnold V. I., Kozlov V. V., Neishtadt A. I., “Matematicheskie aspekty klassicheskoii nebesnoi mekhaniki”, Itogi nauki i tekhniki, 3 | MR
[6] Koltsova O. Yu., Lerman L. M., “Families of transverse Poincaré homoclinicorbits in $2N$-dimensional Hamiltonian systems close to the system with a loop toa saddle-center”, Intern. J. Bifurcation Chaos, 6:6 (1996), 991–1006 | DOI | MR | Zbl
[7] Shilnikov L. P., “K voprosu o strukture rasshirennoi okrestnosti grubogo sostoyaniyaravnovesiya tipa sedlo-fokus”, Matem. sb, 81:1 (1970), 92-103 | Zbl
[8] Kulagin N. E., Lerman L. M., Trifonov K. N., “Twin heteroclinic connections ofreversible systems”, Regular and Chaotic Dynamics, 29:1,40–64 (2024) | DOI | MR | Zbl
[9] Vanderbauwhede A., Fiedler B., “Homoclinic period blow-up in reversible andconservative systems”, Z. Angew. Math. Phys., 43 (1992), 292-318 | DOI | MR | Zbl
[10] Ibañéz S., Rodrigues A., “On the dynamics near a homoclinic networkto a bifocus: Switching and horseshoes”, Int. J. of Bifurc. and Chaos, 25:11 (2015), 1530030 | DOI | MR | Zbl
[11] Galin D. M., “Versalnye deformatsii lineinykh gamiltonovykh sistem”, Trudy seminaraim. I. G. Petrovskogo, 1 (1975), 63–74 | Zbl
[12] Gaivão J. P., Gelfreich V., “Splitting of separatrices for the Hamiltonian-Hopf bifurcation with the Swift–Hohenberg equation as an example”, Nonlinearity, 24:3 (2011), 677–-698 | DOI | MR | Zbl
[13] Glebsky L. Yu., Lerman L. M., “On small stationary localized solutionsfor the generalized 1-D Swift-Hohenberg equation”, Chaos: Interdisc. J Nonlin. Sci., 5:2 (1995), 424–431 | DOI | MR | Zbl
[14] van der Meer J.-C., The Hamiltonian Hopf Bifurcation, Springer-Verlag, Vol 1160 of LectureNotes in Mathematics Berlin, 1985, 115 pp. | DOI | MR | Zbl
[15] Iooss G., Pérouéme M. C., “Perturbed homoclinic solutions in reversible 1:1resonance vector fields”, J. Diff. Equat, 102 (1993), 62–88 | DOI | MR | Zbl
[16] Homburg A. J., “Global aspects of homoclinic bifurcations ofvector fields”, Memoirs of AMS, 121 (1996), 578 | DOI | MR
[17] Sandstede B., “Center manifolds for homoclinic solutions”, J. Dyn. Differ.Equ, 12:3 (2000), 449–510 | DOI | MR | Zbl
[18] Turaev D. V., “Ob odnom sluchae bifurkatsii kontura, obrazovannogo gomoklinicheskimi krivymi sedla”, Metody kachestvennoi teorii differentsialnykh uravnenii, ed. E. A. Leontovich-Andronov, Gorkovskii gosuniversitet, Gorkii, 1984, 162–175 | MR
[19] Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L., Metody kachestvennoi teorii v nelineinoi dinamike, v. 1, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 2004
[20] Lerman L., “Homo- and heteroclinic orbits, hyperbolic subsets in a one-parameter unfolding of a Hamiltonian system with heteroclinic contour with two saddle-foci”, Regul. Chaotic Dynamics, 2:3-4 (1997), 139–155 | MR | Zbl
[21] Belyakov L. A., Shilnikov L. P., “Gomoklinicheskie krivye i slozhnye uedinennye volny”, Metody kachestvennoi teorii differentsialnykh uravnenii, ed. E. A. Leontovich-Andronova, Gorkovskii gosuniversitet, Gorkii, 1985, 22–35 | MR | Zbl
[22] Devaney R., “Homoclinic orbits in Hamiltonian systems”, J. Diff. Equat, 21 (1976), 431–439 | DOI | MR
[23] Lerman L. M., “Complex dynamics and bifurcations in Hamiltoniansystems having the transversal homoclinic orbit to a saddle-focus”, Chaos: Interdisc. J. Nonlin. Sci., 1:2 (1991), 174–180 | DOI | MR | Zbl
[24] Lerman L., “Dynamical phenomena near a saddle-focus homoclinic connection in a Hamiltonian system”, J. Stat. Physics, 101:1–2 (2000), 357–372 | DOI | MR | Zbl
[25] Turaev D. V., “On dimension of non-local bifurcation problems”, Int. J. Bif. Chaos, 6:5 (1996), 919–948 | DOI | MR | Zbl