Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2024_32_6_a7, author = {V. V. Chepyzhov}, title = {Trajectory attractors method for dissipative partial differential equations with small parameter}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {858--877}, publisher = {mathdoc}, volume = {32}, number = {6}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a7/} }
TY - JOUR AU - V. V. Chepyzhov TI - Trajectory attractors method for dissipative partial differential equations with small parameter JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2024 SP - 858 EP - 877 VL - 32 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a7/ LA - ru ID - IVP_2024_32_6_a7 ER -
%0 Journal Article %A V. V. Chepyzhov %T Trajectory attractors method for dissipative partial differential equations with small parameter %J Izvestiya VUZ. Applied Nonlinear Dynamics %D 2024 %P 858-877 %V 32 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a7/ %G ru %F IVP_2024_32_6_a7
V. V. Chepyzhov. Trajectory attractors method for dissipative partial differential equations with small parameter. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 6, pp. 858-877. http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a7/
[1] Babin A. V., Vishik M. I., Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989, 296 pp. | MR
[2] Temam R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, v. 68, Applied Mathematical Sciences, 2, Springer-Verlag, New York, 1997, 650 pp. | DOI | MR | Zbl
[3] Vishik M. I., Chepyzhov V. V., Attractors for Equations of Mathematical Physics, v. 49, American Mathematical Society, American Mathematical Society Colloquium Publications, Providence, 2002, 364 pp. | DOI | MR | Zbl
[4] Sell G. R., “Global attractors for thethree-dimensional Navier–Stokes equations”, J. Dyn.Diff. Eq, 8:1 (1996), 1–33 | DOI | MR | Zbl
[5] Chepyzhov V. V., Conti M., Pata V., “Aminimal approach to the theory of global attractors”, Discrete andContinuous Dyn. Sys, 32 (2012), 2079–2088 | DOI | MR | Zbl
[6] Chepyzhov V. V., Vishik M. I., “Trajectory attractors for evolution equations”, C. R. Acad. Sci. Paris, 321(Série I) (1995), 1309–1314 | MR | Zbl
[7] Chepyzhov V. V., Vishik M. I., “Evolutionequations and their trajectory attractors”, J. Math.PuresAppl., 76:10 (1997), 913–964 | DOI | Zbl
[8] Vishik M. I., Chepyzhov V. V., “Traektornyeattraktory uravnenii matematicheskoi fiziki”, UMN, 66:4 (2011), 3–102 | DOI | MR | Zbl
[9] Lions J.-L., Quelques Méthodes de Résolutions des Problèmes aux Limites non Linéaires, Dunod, Gauthier-Villars, Paris, 1969, 554 pp. | MR
[10] Albritton D., Brue E., Colombo M., “Gluing non-unique Navier-Stokes solutions”, Ann. PDE, 9:17 (2023) | DOI | MR | Zbl
[11] Cheskidov A., Holm D. D., Olson E., Titi E. S., “On Leray-$\alpha $ model of turbulence”, Proceedings of the Royal Society a Mathematical Physical and Engineering Sciences, 461 (2005), 629–649 | DOI | MR | Zbl
[12] Chepyzhov V. V., Titi E. S., Vishik M. I., “On the convergence of solutions of the Leray-$\alpha $ model to the trajectory attractor of the 3D Navier–Stokes system”, Discrete and Continuous Dyn. Sys, 17:3 (2007), 33–52 | MR
[13] Chepyzhov V. V., “Ob approksimatsii traektornogo attraktora 3D sistemy Nave–Stoksa razlichnymi $\alpha$-modelyami gidrodinamiki”, Matem. sb, 207:4 (2016), 143–172 | DOI | Zbl
[14] Bekmaganbetov K.A., Chepyzhov V.V., Chechkin G.A., “Ob attraktorakh uravnenii reaktsii–diffuzii v poristoi ortotropnoi srede”, Dokl. RAN. Matem., inform., prots. upr, 498 (2021), 10–15 | DOI | MR | Zbl
[15] Pedlosky J., Geophysical Fluid Dynamics, Springer, New York, 1979 | DOI | Zbl
[16] Ilyin A. A., Patni K., Zelik S. V., “Upper bounds for the attractor dimension of damped Navier–Stokes equations in $\mathbb{R}^2$”, Discrete and Continuous Dyn. Sys, 36 (2016), 2085–2102 | DOI | MR | Zbl
[17] Rosa R., “The global attractor for the 2D Navier–Stokes flow on some unbounded domains”, Nonlinear Anal, 32 (1998), 71–85 | DOI | MR | Zbl
[18] DiPerna R., Lions P., “Ordinary differential equations, Sobolev spaces and transport theory”, Invent. Math., 98 (1989), 511–547 | DOI | MR | Zbl
[19] Boyer F., Fabrie P., Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, v. 183, Applied Mathematical Sciences, Springer, New York, 2013, 526 pp. | DOI | MR | Zbl
[20] Chepyzhov V. V., Ilyin A. A., Zelik S. V., “Strong trajectory and global $\mathbf{W^{1,p}}$-attractors for the damped-driven Euler system in $\mathbb{R}^{2}$”, Discrete Contin. Dyn. Syst. B, 22 (2017), 123–155 | DOI | MR
[21] Yudovich V. I., “Nestatsionarnye techeniya idealnoi neszhimaemoi zhidkosti”, Zh. Vych. Mat. Fiz., 3 (1963), 1032–1066 | Zbl
[22] Ilin A. A., Chepyzhov V. V., “O silnoi skhodimosti attraktorov uravnenii Nave–Stoksa v predele ischezayuschei vyazkosti”, Matem. zametki, 101:4 (2017), 635–639 | DOI | Zbl
[23] Chepyzhov V. V., Ilyin A. A., Zelik S. V., “Vanishing viscosity limit for global attractors for the damped Navier-Stokes system with stress free boundary conditions”, Physica D, 376–377 (2018), 31–38 | DOI | MR | Zbl