Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2024_32_6_a6, author = {A. S. Gonchenko}, title = {On discrete {Lorenz} attractors of various types}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {832--857}, publisher = {mathdoc}, volume = {32}, number = {6}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a6/} }
A. S. Gonchenko. On discrete Lorenz attractors of various types. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 6, pp. 832-857. http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a6/
[1] Lorenz E. N., “Deterministic nonperiodic flow”, Journal of the Atmospheric Sciences, 20:2 (1963), 130–141 | 2.0.co;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[2] Guckenheimer J., “A strange, strange attractor”, The Hopf Bifurcation Theorem and its Applications, Applied Mathematical Sciences, 19, Springer, New York, 1976, 368–381 | DOI | MR
[3] Williams R. F., “The structure of Lorenz attractor”, Lecture Notes in Math., 615 (1977), 94–112 | DOI | MR
[4] Afraimovich V. S., Bykov V. V., Shilnikov L. P., “O vozniknovenii i strukture attraktora Lorentsa”, Dokl. AN SSSR, 234:2 (1977), 336–339 | MR | Zbl
[5] Afraimovich V. S., Bykov V. V., Shilnikov L. P., “O prityagivayuschikh negrubykh predelnykh mnozhestvakh tipa attraktora Lorentsa”, Trudy MMO, 44 (1982), 150–212 | Zbl
[6] Kaplan J. L., Yorke J. A., “Predturbulence: A regime observed in a fluid flow model of Lorenz”, Comm. Math. Phys., 67:2 (1979), 93–108 | DOI | MR | Zbl
[7] Shilnikov L. P., “Teoriya bifurkatsii i kvazigiperbolicheskie attraktory”, Uspekhi Mat. Nauk, 36:4 (1981), 240
[8] Shilnikov L. P., “Teoriya bifurkatsii i model Lorentsa”, Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, eds. Marsden Zh., MakKraken M., Mir, M., 1980, 317–336
[9] Bunimovich L. A., Sinai Ya. G., “Stokhastichnost attraktora v modeli Lorentsa”, Nelineinye volny, Nauka, M., 1979, 212–260
[10] Bunimovich L., “Statistical properties of Lorenz attractors”, Nonlinear Dynamics and Turbulence, ed. G.I. Barenblatt, Pitman, Boston, 1983, 1-22 | MR
[11] Rand D., “The topological classification of Lorenz attractor”, Math. Proc. of Cambridge Phil. Soc, 83:3 (1978), 451–460 | DOI | MR | Zbl
[12] Malkin M. I., “O topologicheskoi sopryazhennosti razryvnykh otobrazhenii intervala”, UMZh, 32:5 (1980), 610–616 | MR
[13] Morales C. A., Pacifico M. J., Pujals E. R., “On C1 robust singular transitive sets for three-dimensional flows”, C. R. Acad. Sci. Ser. I Math., 326 (1998), 81–86 | MR | Zbl
[14] Sataev E. A., “Nekotorye svoistva singulyarnykh giperbolicheskikh attraktorov”, Mat. sb, 200:1 (2009), 35–76 | DOI | MR | Zbl
[15] Turaev D. V., Shilnikov L. P., “Primer dikogo strannogo attraktora”, Mat. sb, 189 (1998), 291–314 | DOI | MR | Zbl
[16] Turaev D. V., Shilnikov L. P., “Psevdogiperbolichnost i zadacha o periodicheskom vozmuschenii attraktorov lorentsevskogo tipa”, Doklady RAN, 77b:1b (2008), 17–21 | MR | Zbl
[17] Gonchenko S., Ovsyannikov I., Simo C., Turaev D., “Three-dimensional Henon-like maps and wild Lorenz-like attractors”, Int. J. of Bifurcation and Chaos, 15:11 (2005), 3493–3508 | DOI | MR | Zbl
[18] Gonchenko A. S., Gonchenko S. V., Shilnikov L. P., “K voprosu o stsenariyakh vozniknoveniya khaosa v trekhmernykh otobrazheniyakh”, Nelineinaya Dinamika, 8 (2012), 3-28
[19] Gonchenko S. V., Gonchenko A. S., Ovsyannikov I. I., Turaev D. V., “Examples of Lorenz-like Attractors in Henon-like Maps”, Math. Model. Nat. Phenom, 8:5 (2013), 48–70 | DOI | MR | Zbl
[20] Gonchenko A. S., Gonchenko S. V., Kazakov A. O., Turaev D., “Simple scenarios of onset of chaos in three-dimensional maps”, Int. J. Bif. and Chaos, 24:8 (2014), 25 | DOI | MR | Zbl
[21] Gonchenko A. S., Gonchenko S. V., “Variety of strange pseudohyperbolic attractors in three-dimensional generalized Henon maps”, Physica D, 337(4) (2016), 43–57 | DOI | MR | Zbl
[22] Hénon M., “A two-dimensional mapping with a strange attractor”, The Theory of Chaotic Attractors, eds. Hunt B.R, Li T.Y, Kennedy J.A, Nusse H.E., Springer, New York, 1976, 94–102 | DOI | MR
[23] Gonchenko S., Gonchenko A., “On discrete Lorenz-like attractors in three-dimensional maps with axialsymmetry”, Chaos, 33:12 (2023), 123104 | DOI | MR | Zbl
[24] Gonchenko S., Gonchenko A., Kazakov A., and Samylina E., “On discrete Lorenz-like attractors”, Chaos, 31:2 (2021), 023117 | DOI | MR | Zbl
[25] Gonchenko S., Karatetskaia E., Kazakov A., Kruglov V., “Conjoined Lorenz twins — a new pseudohyperbolicattractor in three-dimensional maps and flows”, Chaos, 32 (2022), 121107 | DOI | MR | Zbl
[26] Aframovich V.S., Shilnikov L. P., “Strange attractors and quasiattractor”, Nonlinear Dynamics and Turbulence, eds. G. I. Barenblatt, G. Iooss, D. D. Joseph, Pitmen, Boston, 1983, 1–34 | MR
[27] Gonchenko S. V., Turaev D. V., Shilnikov L. P., “Dinamicheskie yavleniya v mnogomernykh sistemakh s negruboi gomoklinicheskoi krivoi Puankare”, Dokl. Ros. Akad. Nauk, 330:2 (1993), 144-147 | Zbl
[28] Gonchenko S., Shilnikov L., Turaev D., “Dynamical phenomena in systems with structurally unstable Poincare homoclinic orbits”, Chaos, 6:1 (1996), 15-31 | DOI | MR | Zbl
[29] Gonchenko S. V., Shilnikov L. P., Turaev D. V., “On dynamical properties ofmultidimensional diffeomorphisms from Newhouse regions”, Nonlinearity, 21:5 (2008), 923–972 | DOI | MR | Zbl
[30] Gonchenko A. S., Gonchenko S. V., Kazakov A. O., Kozlov A. D., “Elements of contemporary theory of dynamical chaos: A tutorial. Part I. Pseudohyperbolic attractors”, Int. J. Bifurcation and Chaos, 28:11 (2018), 1830036 | DOI | MR | Zbl
[31] Gonchenko S. V., Kazakov A. O., Turaev D., “Wild pseudohyperbolic attractors in a four-dimensional Lorenz system”, Nonlinearity, 34:4 (2021), 2018–2047 | DOI | MR | Zbl
[32] Shilnikov L. P., “Teoriya bifurkatsii i turbulentnost”, Metody kachestvennoi teorii differentsialnykh uravnenii, Gorkii, 1986, 150-163
[33] Gonchenko S. V., Gonchenko A. S., Kazakov A. O., “Richness of chaotic dynamics in nonholonomic models of a Celtic stone”, Regular and Chaotic Dynamics, 15:5 (2013), 521-538 | DOI | MR
[34] Gonchenko A. S., Gonchenko S. V., Turaev D., “Doubling of invariant curves and chaos inthree-dimensional diffeomorphisms”, Chaos, 31 (2021), 113130 | DOI | MR | Zbl
[35] Gonchenko A. S., Samylina E. A., “Ob oblasti suschestvovaniya diskretnogo attraktora Lorentsa v negolonomnoi modeli keltskogo kamnya”, Izv. vuzov. Radiofizika, 62:5 (2019)
[36] Newhouse S. E., “The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms”, Publ. Math. Inst.Hautes Etudes Sci., 50 (1979), 101–151 | DOI | MR
[37] Gonchenko S. V., Turaev D. V., Shilnikov L. P., “O suschestvovanii oblastei Nyukhausa v okrestnosti sistem s negruboi gomoklinicheskoi krivoi Puankare (mnogomernyi sluchai)”, Dokl. Ros. Akad. Nauk, 329 (1993) | Zbl
[38] Gonchenko S. V., Shilnikov L. P., “Ob invariantakh $\Omega$-sopryazhennosti diffeomorfizmov s negruboi gomoklinicheskoi traektoriei”, Ukr. mat. zhurnal, 42:2 (1990), 153-159 | MR | Zbl
[39] Gonchenko S. V., Turaev D. V., Shilnikov L. P., “Gomoklinicheskie kasaniya proizvolnogo poryadka v oblastyakh Nyukhausa”, Itogi nauki i tekhniki, ser.Sovremennaya matematika i ee prilozheniya; tematicheskie obzory, 67 (1999), 69-128 | Zbl
[40] Gonchenko S. V., Shil'nikov L. P., Turaev D. V., “On models with non-rough Poincare homoclinic curves”, Physica D, 62:1–4 (1993), 1–14 | DOI | MR | Zbl
[41] Shimizu T., Morioka N., “On the bifurcation of a symmetric limit cycle to an asymmetric one in a simple model”, Phys. Lett. A, 76 (1980), 201–204 | DOI | MR
[42] Shilnikov A. L., Shilnikov L. P., Turaev D. V., “Normal forms andLorenz attractors”, Int. J. of Bifurcation and chaos, 3 (1993), 1123–1139 | DOI | MR | Zbl
[43] Shilnikov A. L., “On bifurcations of the Lorenz attractor in the Shimuizu-Morioka model”, Physica D, 62 (1993), 338–346 | DOI | MR | Zbl