On Lorenz-type attractors in a six-dimensional generalization of the Lorenz model
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 6, pp. 816-831.

Voir la notice de l'article provenant de la source Math-Net.Ru

The topic of the paper — Lorenz-type attractors in multidimensional systems. We consider a six-dimensional model that describes convection in a layer of liquid, taking into account impurities in the atmosphere and liquid, as well as the rotation of the Earth. The main purpose of the work is to study bifurcations in the corresponding system and describe scenarios for the emergence of chaotic attractors of various types. Results. It is shown that in the system under consideration, both a classical Lorenz attractor (the theory of which was developed in the works of Afraimovich–Bykov–Shilnikov) and an attractor of a new type, visually similar to the Lorenz attractor, but containing a symmetric pair of equilibrium states, can arise. It has been established that the Lorenz attractor in this system is born as a result of the classical scenario proposed by L. P. Shilnikov. We propose a new scenario for the emergence of an attractor of the second type via bifurcations inside the Lorenz attractor. In the paper we also discuss homoclinic and heteroclinic bifurcations that inevitably arise inside the found attractors, as well as their possible pseudohyperbolicity.  
Keywords: chaotic attractor, pseudohyperbolicity, Lorenz attractor, Lyapunov exponents, homoclinic bifurcations, heteroclinic bifurcations.
@article{IVP_2024_32_6_a5,
     author = {D. M. Sukharev and V. {\CYRA}. Koryakin and A. O. Kazakov},
     title = {On {Lorenz-type} attractors in a six-dimensional generalization of the {Lorenz} model},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {816--831},
     publisher = {mathdoc},
     volume = {32},
     number = {6},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a5/}
}
TY  - JOUR
AU  - D. M. Sukharev
AU  - V. А. Koryakin
AU  - A. O. Kazakov
TI  - On Lorenz-type attractors in a six-dimensional generalization of the Lorenz model
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2024
SP  - 816
EP  - 831
VL  - 32
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a5/
LA  - ru
ID  - IVP_2024_32_6_a5
ER  - 
%0 Journal Article
%A D. M. Sukharev
%A V. А. Koryakin
%A A. O. Kazakov
%T On Lorenz-type attractors in a six-dimensional generalization of the Lorenz model
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2024
%P 816-831
%V 32
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a5/
%G ru
%F IVP_2024_32_6_a5
D. M. Sukharev; V. А. Koryakin; A. O. Kazakov. On Lorenz-type attractors in a six-dimensional generalization of the Lorenz model. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 6, pp. 816-831. http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a5/

[1] Lorenz E. N., “Deterministic nonperiodic flow”, Journal of atmospheric sciences, 20:2 (1963), 130–141 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[2] Afraimovich V. S., Bykov V. V., Shilnikov L. P., “O vozniknovenii i strukture attraktora Lorentsa”, DAN SSSR, 234:2 (1977), 336–339 | MR | Zbl

[3] Afraimovich V. S., Bykov V. V., Shilnikov L. P., “O prityagivayuschikh negrubykh mnozhestvakh tipa attraktora Lorentsa”, Trudy MMO, 44 (1982), 150–212 | Zbl

[4] Guckenheimer J., Williams R. F., “Structural stability of Lorenz attractors”, Publications Mathématiques de l'IHÉS, 50 (1979), 59-72 | DOI | MR | Zbl

[5] Marsden J. E., McCracken M., Guckenheimer J., “A Strange, Strange Attractor”, The Hopf Bifurcation and Its Applications, Applied Mathematical Sciences, 19, Springer, New York, 1976, 368–381 | DOI | MR

[6] Williams R. F., “The structure of Lorenz attractors”, Publications Mathematiques de l'IHES, 50 (1979), 73–99 | DOI | MR | Zbl

[7] Tucker W., “The Lorenz attractor exists”, Comptes Rendus de l'Académie des Sciences-Series I-Mathematics, 328:12 (1999), 1197–1202 | DOI | MR | Zbl

[8] Gonchenko S. V., Kazakov A. O., Turaev D., “Wild pseudohyperbolic attractor in a four-dimensional Lorenz system”, Nonlinearity, 34(2) (2021), 1–30 | DOI | MR

[9] Turaev D. V., Shilnikov L. P., “Primer dikogo strannogo attraktora”, Matem. Sbornik, 189:2 (1998), 137–160 | DOI | Zbl

[10] Turaev D. V., Shilnikov L. P., “Psevdogiperbolichnost i zadacha o periodicheskom vozmuschenii attraktorov lorentsevskogo tipa”, Doklady Akademii nauk, 418:1 (2008), 23–27 | Zbl

[11] Moon S., Seo J. M., Beom-Soon H., Park J., “A physically extended Lorenz system”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 29:6 (2019), 063129 | DOI | MR | Zbl

[12] Dhooge A., Govaerts W., Kuznetsov Y. A., Meijer H. G. E., Sautois B., “New features of the software MatCont for bifurcation analysis of dynamical systems”, Mathematical and Computer Modelling of Dynamical Systems, 14:2 (2008), 147–175 | DOI | MR | Zbl

[13] De Witte V., Govaerts W., Kuznetsov Y. A. Friedman M., “Interactive initialization and continuation of homoclinic and heteroclinic orbits in MATLAB”, ACM Trans. Math. Software, 38 (2012), 1–34 | DOI | MR

[14] Shilnikov L. P., “Teoriya bifurkatsii i model Lorentsa”, Bifurkatsii rozhdeniya tsikla i ee prilozheniya, eds. Marsden Dzh., Mak-Kraken M., Mir, M., 1980, 317–335

[15] Benettin G., Galgani L., Giorgilli A., Strelcyn M., “Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 1: Theory”, Meccanica, 15 (1980), 9–20 | DOI | Zbl

[16] Lyubimov D. V., Zaks M. A., “Two mechanisms of the transition to chaos in finite-dimensional models of convection”, Physica D: Nonlinear Phenomena, 9 (1983), 52–64 | DOI | MR | Zbl

[17] Rovella A., “The dynamics of perturbations of the contracting Lorenz attractor”, Bol. da Soc. Bras. de Matemática Bull. Braz. Math. Soc, 24 (1993), 233–259 | DOI | MR | Zbl

[18] Barrio R., Shilnikov A., Shilnikov L., “Kneadings, symbolic dynamics and painting Lorenz chaos”, International Journal of Bifurcation and Chaos, 22:04 (2012), 1230016 | DOI | MR | Zbl

[19] Xing T., Barrio R., Shilnikov A., “Symbolic quest into homoclinic chaos”, International Journal of Bifurcation and Chaos, 24:08 (2014), 1440004 | DOI | MR | Zbl

[20] Pusuluri K., Shilnikov A., “Homoclinic chaos and its organization in a nonlinear optics model”, Physical Review E, 98:4 (2018), 040202 | DOI

[21] Pusuluri K., Meijer H. G. E., Shilnikov A. L., “Homoclinic puzzles and chaos in a nonlinear laser model”, Communications in Nonlinear Science and Numerical Simulation, 93 (2021), 105503 | DOI | MR | Zbl

[22] Bykov V. V., Metody kachestvennoi teorii differentsialnykh uravnenii, ed. E. A. Leontovich-Andronova, GGU, Gorkii, 1978, O strukture okrestnosti separatrisnogo kontura s sedlofokusom

[23] Bykov V. V., “The bifurcations of separatrix contours and chaos”, Physica D: Nonlinear Phenomena, 62:1–4 (1993), 290–299 | DOI | MR | Zbl

[24] Bykov V. V., Shilnikov A. L., “O granitsakh oblasti suschestvovaniya attraktora Lorentsa”, Metody kachestv, teorii differents. uravnenii, 1989, 151–159 | MR

[25] Zaks M. A., Lyubimov V., “Anomalously fast convergence of a doubling-type bifurcation chain in systems with two saddle equilibria”, Zh. Eksp. Teor. Fiz, 87 (1984), 1696–1699

[26] Zaks M. A., Lyubimov D. V., “Bifurcation sequences in the dissipative systems with saddle equilibria”, Banach Center Publications, 23:1 (1989), 367–380 | DOI | MR | Zbl