Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2024_32_6_a5, author = {D. M. Sukharev and V. {\CYRA}. Koryakin and A. O. Kazakov}, title = {On {Lorenz-type} attractors in a six-dimensional generalization of the {Lorenz} model}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {816--831}, publisher = {mathdoc}, volume = {32}, number = {6}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a5/} }
TY - JOUR AU - D. M. Sukharev AU - V. А. Koryakin AU - A. O. Kazakov TI - On Lorenz-type attractors in a six-dimensional generalization of the Lorenz model JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2024 SP - 816 EP - 831 VL - 32 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a5/ LA - ru ID - IVP_2024_32_6_a5 ER -
%0 Journal Article %A D. M. Sukharev %A V. А. Koryakin %A A. O. Kazakov %T On Lorenz-type attractors in a six-dimensional generalization of the Lorenz model %J Izvestiya VUZ. Applied Nonlinear Dynamics %D 2024 %P 816-831 %V 32 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a5/ %G ru %F IVP_2024_32_6_a5
D. M. Sukharev; V. А. Koryakin; A. O. Kazakov. On Lorenz-type attractors in a six-dimensional generalization of the Lorenz model. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 6, pp. 816-831. http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a5/
[1] Lorenz E. N., “Deterministic nonperiodic flow”, Journal of atmospheric sciences, 20:2 (1963), 130–141 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[2] Afraimovich V. S., Bykov V. V., Shilnikov L. P., “O vozniknovenii i strukture attraktora Lorentsa”, DAN SSSR, 234:2 (1977), 336–339 | MR | Zbl
[3] Afraimovich V. S., Bykov V. V., Shilnikov L. P., “O prityagivayuschikh negrubykh mnozhestvakh tipa attraktora Lorentsa”, Trudy MMO, 44 (1982), 150–212 | Zbl
[4] Guckenheimer J., Williams R. F., “Structural stability of Lorenz attractors”, Publications Mathématiques de l'IHÉS, 50 (1979), 59-72 | DOI | MR | Zbl
[5] Marsden J. E., McCracken M., Guckenheimer J., “A Strange, Strange Attractor”, The Hopf Bifurcation and Its Applications, Applied Mathematical Sciences, 19, Springer, New York, 1976, 368–381 | DOI | MR
[6] Williams R. F., “The structure of Lorenz attractors”, Publications Mathematiques de l'IHES, 50 (1979), 73–99 | DOI | MR | Zbl
[7] Tucker W., “The Lorenz attractor exists”, Comptes Rendus de l'Académie des Sciences-Series I-Mathematics, 328:12 (1999), 1197–1202 | DOI | MR | Zbl
[8] Gonchenko S. V., Kazakov A. O., Turaev D., “Wild pseudohyperbolic attractor in a four-dimensional Lorenz system”, Nonlinearity, 34(2) (2021), 1–30 | DOI | MR
[9] Turaev D. V., Shilnikov L. P., “Primer dikogo strannogo attraktora”, Matem. Sbornik, 189:2 (1998), 137–160 | DOI | Zbl
[10] Turaev D. V., Shilnikov L. P., “Psevdogiperbolichnost i zadacha o periodicheskom vozmuschenii attraktorov lorentsevskogo tipa”, Doklady Akademii nauk, 418:1 (2008), 23–27 | Zbl
[11] Moon S., Seo J. M., Beom-Soon H., Park J., “A physically extended Lorenz system”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 29:6 (2019), 063129 | DOI | MR | Zbl
[12] Dhooge A., Govaerts W., Kuznetsov Y. A., Meijer H. G. E., Sautois B., “New features of the software MatCont for bifurcation analysis of dynamical systems”, Mathematical and Computer Modelling of Dynamical Systems, 14:2 (2008), 147–175 | DOI | MR | Zbl
[13] De Witte V., Govaerts W., Kuznetsov Y. A. Friedman M., “Interactive initialization and continuation of homoclinic and heteroclinic orbits in MATLAB”, ACM Trans. Math. Software, 38 (2012), 1–34 | DOI | MR
[14] Shilnikov L. P., “Teoriya bifurkatsii i model Lorentsa”, Bifurkatsii rozhdeniya tsikla i ee prilozheniya, eds. Marsden Dzh., Mak-Kraken M., Mir, M., 1980, 317–335
[15] Benettin G., Galgani L., Giorgilli A., Strelcyn M., “Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 1: Theory”, Meccanica, 15 (1980), 9–20 | DOI | Zbl
[16] Lyubimov D. V., Zaks M. A., “Two mechanisms of the transition to chaos in finite-dimensional models of convection”, Physica D: Nonlinear Phenomena, 9 (1983), 52–64 | DOI | MR | Zbl
[17] Rovella A., “The dynamics of perturbations of the contracting Lorenz attractor”, Bol. da Soc. Bras. de Matemática Bull. Braz. Math. Soc, 24 (1993), 233–259 | DOI | MR | Zbl
[18] Barrio R., Shilnikov A., Shilnikov L., “Kneadings, symbolic dynamics and painting Lorenz chaos”, International Journal of Bifurcation and Chaos, 22:04 (2012), 1230016 | DOI | MR | Zbl
[19] Xing T., Barrio R., Shilnikov A., “Symbolic quest into homoclinic chaos”, International Journal of Bifurcation and Chaos, 24:08 (2014), 1440004 | DOI | MR | Zbl
[20] Pusuluri K., Shilnikov A., “Homoclinic chaos and its organization in a nonlinear optics model”, Physical Review E, 98:4 (2018), 040202 | DOI
[21] Pusuluri K., Meijer H. G. E., Shilnikov A. L., “Homoclinic puzzles and chaos in a nonlinear laser model”, Communications in Nonlinear Science and Numerical Simulation, 93 (2021), 105503 | DOI | MR | Zbl
[22] Bykov V. V., Metody kachestvennoi teorii differentsialnykh uravnenii, ed. E. A. Leontovich-Andronova, GGU, Gorkii, 1978, O strukture okrestnosti separatrisnogo kontura s sedlofokusom
[23] Bykov V. V., “The bifurcations of separatrix contours and chaos”, Physica D: Nonlinear Phenomena, 62:1–4 (1993), 290–299 | DOI | MR | Zbl
[24] Bykov V. V., Shilnikov A. L., “O granitsakh oblasti suschestvovaniya attraktora Lorentsa”, Metody kachestv, teorii differents. uravnenii, 1989, 151–159 | MR
[25] Zaks M. A., Lyubimov V., “Anomalously fast convergence of a doubling-type bifurcation chain in systems with two saddle equilibria”, Zh. Eksp. Teor. Fiz, 87 (1984), 1696–1699
[26] Zaks M. A., Lyubimov D. V., “Bifurcation sequences in the dissipative systems with saddle equilibria”, Banach Center Publications, 23:1 (1989), 367–380 | DOI | MR | Zbl