On limit sets of simplest skew products defined on multidimensional cells
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 6, pp. 796-815.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this work is to describe two important types of limit sets of the most simple skew products of interval maps, the phase space of each of which is a compact $n$-dimensional cell ($n\geqslant 2$): firstly, a non-wandering set and, secondly, $\omega$-limit sets of trajectories. Methods. A method for investigating of a nonwandering set (new even for the two-dimensional case) is proposed, based on the use of the concept of $C_0-\Omega$-blow up in continuous closed interval maps, and the concept of $C_0-\Omega$-blow up introduced in the work in the family of continuous fibers maps. To describe the $\omega$-limit sets, the technique of special series constructed for the trajectory and containing an information about its asymptotic behavior is used. Results. A complete description is given of the nonwandering set of the continuous simplest skew product of the interval maps, that is, a continuous skew product on a compact $n$-dimensional cell, the set of (least) periods of periodic points of which is bounded. The results obtained in the description of a nonwandering set are used in the study of $\omega$-limit sets. The paper describes a topological structure of $\omega$-limit sets of the maps under consideration. Sufficient conditions have been found under which the $\omega$-limit set of the trajectory is a periodic orbit, as well as the necessary conditions for the existence of one-dimensional $\omega$-limit sets. Conclusion. Further development of the $C_0-\Omega$-blow up technique in the family of maps in fibers will allow us to describe the structure of a nonwandering set of skew products of one-dimensional maps, in particular, with a closed set of periodic points defined on the simplest manifolds of arbitrary finite dimension. Further development of the theory of special divergent series constructed in the work will allow us to proceed to the description of $\omega$-limit sets of arbitrary dimension $d$, where $2 \leqslant d \leqslant n - 1$, $n\geqslant 3$, in the simplest skew products.
Keywords: skew product, nonwandering set, $C_0-\Omega$-blow up, $\omega$-limit set, fixed point, periodic point
@article{IVP_2024_32_6_a4,
     author = {L. S. Efremova and M. A. Shalagin},
     title = {On limit sets of simplest skew products defined on multidimensional cells},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {796--815},
     publisher = {mathdoc},
     volume = {32},
     number = {6},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a4/}
}
TY  - JOUR
AU  - L. S. Efremova
AU  - M. A. Shalagin
TI  - On limit sets of simplest skew products defined on multidimensional cells
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2024
SP  - 796
EP  - 815
VL  - 32
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a4/
LA  - ru
ID  - IVP_2024_32_6_a4
ER  - 
%0 Journal Article
%A L. S. Efremova
%A M. A. Shalagin
%T On limit sets of simplest skew products defined on multidimensional cells
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2024
%P 796-815
%V 32
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a4/
%G ru
%F IVP_2024_32_6_a4
L. S. Efremova; M. A. Shalagin. On limit sets of simplest skew products defined on multidimensional cells. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 6, pp. 796-815. http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a4/

[1] Efremova L. S., “Remarks on the nonwandering set of skew products with a closed set of periodic points of the quotient map”, Nonlinear maps and their applications, v. 57, Springer Proc. Math. Statist., Springer, New York, 2014, 39–58 | DOI | MR | Zbl

[2] Efremova L. S., “Dinamika kosykh proizvedenii otobrazhenii intervala”, Uspekhi matem. nauk, 72:1 S (2017), 107–192 | DOI | MR | Zbl

[3] Efremova L. S., “Differentsialnye svoistva i prityagivayuschie mnozhestva prosteishikh kosykh proizvedenii otobrazhenii intervala”, Matem. sb, 201:6 (2010), 93–130 | DOI | Zbl

[4] Sharkovskii A. N., “O prityagivayuschikh i prityagivayuschikhsya mnozhestvakh”, Dokl. AN SSS, 160:5 (1965), 1036–1038 | Zbl

[5] Sharkovskii A. N., Attraktory traektorii i ikh basseiny, Naukova Dumka, Kiev, 2013, 320 pp.

[6] Blokh A., Bruckner A. M., Humke P. D., Smital J., “The space of $\omega$-limit sets of a continuous map of the interval”, Transac. Amer. Math. Soc, 348 (1996), 1357–1372 | DOI | MR | Zbl

[7] Efremova L. S., “Simplest skew products on $n$-dimensional ($n\geq 2$) cells, cylinders and tori”, Lobachevskii J. Math., 43 (2022), 1598-1618 | DOI | MR | Zbl

[8] Nitetski Z., Vvedenie v differentsialnuyu dinamiku, Mir, M., 1975, 304 pp.

[9] Kolyada S. F., “On dynamics of triangular maps of the square”, Ergodic Theory Dynam. Systems, 12 (1992), 749–768 | DOI | MR | Zbl

[10] Kloeden P. E., “On Sharkovsky’s cycle coexistence ordering”, Bull. Austral. Math. Soc, 20:2 (1979), 171–177 | DOI | MR

[11] Efremova L. S., “O nebluzhdayuschem mnozhestve i tsentre treugolnykh otobrazhenii s zamknutym mnozhestvom periodicheskikh tochek v baze”, Dinamicheskie sistemy i nelineinye yavleniya, In-t matem. AN USSR, Kiev, 1990, 15–25 | MR

[12] Bronshtein I. U., Neavtonomnye dinamicheskie sistemy, Shtiintsa, Kishinev, 1984, 291 pp.

[13] Sharkovskii A. N., Maistrenko Yu. L., Romanenko E. Yu., Raznostnye uravneniya i ikh prilozheniya, Naukova dumka, Kiev, 1986, 278 pp.

[14] Smale S., “Differentiable dynamical systems”, Bull. Amer. Math. Soc, 73:6 (1967), 747–817 | DOI | MR | Zbl

[15] Palis J., “$\Omega$-explosions”, Proc. Amer. Math. Soc, 27:1 (1971), 85–90 | DOI | MR | Zbl

[16] Hirsch M. W., Pugh C. C., “Stable manifolds and hyperbolic sets”, Proceedings of Symposia in Pure Mathematics, 1970, 133–163 | DOI | MR | Zbl

[17] Stenkin O. V., Shilnikov L. P., “Gomoklinicheskii $\Omega$-vzryv i oblasti giperbolichnosti”, Matem. sb, 189:4 (1998), 125–144 | DOI | MR | Zbl

[18] Gonchenko S. V., Stenkin O. V., “Gomoklinicheskii $\Omega$-vzryv: intervaly giperbolichnosti i ikh granitsy”, Nelineinaya dinam, 7:1 (2011), 3–24

[19] Efremova L. S., Makhrova E. N., “Odnomernye dinamicheskie sistemy”, Uspekhi matem. nauk, 76:5 (2021), 81-146 | DOI | MR | Zbl

[20] Efremova L. S., “O $C^0$- $\Omega$-vzryvakh v gladkikh kosykh proizvedeniyakh otobrazhenii intervala s zamknutym mnozhestvom periodicheskikh tochek”, Vestn. Nizhegorodskogo gos. un-ta im. N. I. Lobachevskogo, 2012, no. 3(1), 130–136

[21] Sharkovskii O. M., “Neblukayuchi tochki ta tsentr neperervnogo vidobrazhennya pryamoi v sebe”, Dopov. AN URSR, 7 (1964), 865–868

[22] Nitecky Z., “Maps of the interval with closed periodic set”, Proc. Amer. Math. Soc, 85:3 (1982), 451–456 | DOI | MR

[23] Block L. S., Coppel W. A., Dynamics in One Dimension, v. 1513, Lecture Notes in Math, Springer-Verlag, Berlin, 1992, 252 pp. | DOI | MR | Zbl

[24] Sharkovskii A. N., “O tsiklakh i strukture nepreryvnogo otobrazheniya”, Ukr. matem. zhurnal, 17:3 (1965), 104–111 | MR | Zbl

[25] Fedorenko V. V., Sharkovskii A. N., “Nepreryvnye otobrazheniya intervala s zamknutym mnozhestvom periodicheskikh tochek”, Issledovanie differentsialnykh i differentsialno-raznostnykh uravnenii, ed. A. N. Sharkovskii, Institut matem. AN USSR, Kiev, 1980, 137–145

[26] Efremova L. S., “$C^1$-Smooth $\Omega$-Stable Skew Products and CompletelyGeometrically Integrable Self-Maps of $3D$-Tori, I: $\Omega$-Stability”, Regular and Chaotic Dynamics, 29:3 (2024), 491–514 | DOI | MR | Zbl

[27] Efremova L. S., New Developments in Discrete Dynamical Systems, Difference Equations and Applications, Springer Proc. Math. Statist, Springer, New York, 2024

[28] Kuratovskii K., Topologiya, v. 1, Mir, M., 1966, 594 pp. | MR

[29] Anosov D. V., Dinamicheskie sistemy v 60-e gody: giperbolicheskaya revolyutsiya. Matematicheskie sobytiya XX veka, Fazis, M., 2003

[30] Balibrea F., Guirao J. L. G., Casado J. I. M., “A triangular map on $I^2$ whose $\omega$-limit sets are allcompact interval of $\{0\}\times I$”, Discrete Contin. Dyn. Syst, 8:4 (2002), 983–994 | DOI | MR | Zbl

[31] Balibrea F., Guirao J. L. G., Casado J. I. M., “On $\omega$-limit sets of triangular maps on the unit cube”, J. Difference Equ. Appl., 9:3–4 (2003), 289–304 | DOI | MR | Zbl

[32] Raikov D. A., Odnomernyi matematicheskii analiz, Vysshaya shkola, M., 1982, 416 pp. | MR

[33] Zorich V. A., Matematicheskii analiz, v. 1, Nauka, M., 1981, 543 pp.