Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2024_32_6_a4, author = {L. S. Efremova and M. A. Shalagin}, title = {On limit sets of simplest skew products defined on multidimensional cells}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {796--815}, publisher = {mathdoc}, volume = {32}, number = {6}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a4/} }
TY - JOUR AU - L. S. Efremova AU - M. A. Shalagin TI - On limit sets of simplest skew products defined on multidimensional cells JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2024 SP - 796 EP - 815 VL - 32 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a4/ LA - ru ID - IVP_2024_32_6_a4 ER -
L. S. Efremova; M. A. Shalagin. On limit sets of simplest skew products defined on multidimensional cells. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 6, pp. 796-815. http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a4/
[1] Efremova L. S., “Remarks on the nonwandering set of skew products with a closed set of periodic points of the quotient map”, Nonlinear maps and their applications, v. 57, Springer Proc. Math. Statist., Springer, New York, 2014, 39–58 | DOI | MR | Zbl
[2] Efremova L. S., “Dinamika kosykh proizvedenii otobrazhenii intervala”, Uspekhi matem. nauk, 72:1 S (2017), 107–192 | DOI | MR | Zbl
[3] Efremova L. S., “Differentsialnye svoistva i prityagivayuschie mnozhestva prosteishikh kosykh proizvedenii otobrazhenii intervala”, Matem. sb, 201:6 (2010), 93–130 | DOI | Zbl
[4] Sharkovskii A. N., “O prityagivayuschikh i prityagivayuschikhsya mnozhestvakh”, Dokl. AN SSS, 160:5 (1965), 1036–1038 | Zbl
[5] Sharkovskii A. N., Attraktory traektorii i ikh basseiny, Naukova Dumka, Kiev, 2013, 320 pp.
[6] Blokh A., Bruckner A. M., Humke P. D., Smital J., “The space of $\omega$-limit sets of a continuous map of the interval”, Transac. Amer. Math. Soc, 348 (1996), 1357–1372 | DOI | MR | Zbl
[7] Efremova L. S., “Simplest skew products on $n$-dimensional ($n\geq 2$) cells, cylinders and tori”, Lobachevskii J. Math., 43 (2022), 1598-1618 | DOI | MR | Zbl
[8] Nitetski Z., Vvedenie v differentsialnuyu dinamiku, Mir, M., 1975, 304 pp.
[9] Kolyada S. F., “On dynamics of triangular maps of the square”, Ergodic Theory Dynam. Systems, 12 (1992), 749–768 | DOI | MR | Zbl
[10] Kloeden P. E., “On Sharkovsky’s cycle coexistence ordering”, Bull. Austral. Math. Soc, 20:2 (1979), 171–177 | DOI | MR
[11] Efremova L. S., “O nebluzhdayuschem mnozhestve i tsentre treugolnykh otobrazhenii s zamknutym mnozhestvom periodicheskikh tochek v baze”, Dinamicheskie sistemy i nelineinye yavleniya, In-t matem. AN USSR, Kiev, 1990, 15–25 | MR
[12] Bronshtein I. U., Neavtonomnye dinamicheskie sistemy, Shtiintsa, Kishinev, 1984, 291 pp.
[13] Sharkovskii A. N., Maistrenko Yu. L., Romanenko E. Yu., Raznostnye uravneniya i ikh prilozheniya, Naukova dumka, Kiev, 1986, 278 pp.
[14] Smale S., “Differentiable dynamical systems”, Bull. Amer. Math. Soc, 73:6 (1967), 747–817 | DOI | MR | Zbl
[15] Palis J., “$\Omega$-explosions”, Proc. Amer. Math. Soc, 27:1 (1971), 85–90 | DOI | MR | Zbl
[16] Hirsch M. W., Pugh C. C., “Stable manifolds and hyperbolic sets”, Proceedings of Symposia in Pure Mathematics, 1970, 133–163 | DOI | MR | Zbl
[17] Stenkin O. V., Shilnikov L. P., “Gomoklinicheskii $\Omega$-vzryv i oblasti giperbolichnosti”, Matem. sb, 189:4 (1998), 125–144 | DOI | MR | Zbl
[18] Gonchenko S. V., Stenkin O. V., “Gomoklinicheskii $\Omega$-vzryv: intervaly giperbolichnosti i ikh granitsy”, Nelineinaya dinam, 7:1 (2011), 3–24
[19] Efremova L. S., Makhrova E. N., “Odnomernye dinamicheskie sistemy”, Uspekhi matem. nauk, 76:5 (2021), 81-146 | DOI | MR | Zbl
[20] Efremova L. S., “O $C^0$- $\Omega$-vzryvakh v gladkikh kosykh proizvedeniyakh otobrazhenii intervala s zamknutym mnozhestvom periodicheskikh tochek”, Vestn. Nizhegorodskogo gos. un-ta im. N. I. Lobachevskogo, 2012, no. 3(1), 130–136
[21] Sharkovskii O. M., “Neblukayuchi tochki ta tsentr neperervnogo vidobrazhennya pryamoi v sebe”, Dopov. AN URSR, 7 (1964), 865–868
[22] Nitecky Z., “Maps of the interval with closed periodic set”, Proc. Amer. Math. Soc, 85:3 (1982), 451–456 | DOI | MR
[23] Block L. S., Coppel W. A., Dynamics in One Dimension, v. 1513, Lecture Notes in Math, Springer-Verlag, Berlin, 1992, 252 pp. | DOI | MR | Zbl
[24] Sharkovskii A. N., “O tsiklakh i strukture nepreryvnogo otobrazheniya”, Ukr. matem. zhurnal, 17:3 (1965), 104–111 | MR | Zbl
[25] Fedorenko V. V., Sharkovskii A. N., “Nepreryvnye otobrazheniya intervala s zamknutym mnozhestvom periodicheskikh tochek”, Issledovanie differentsialnykh i differentsialno-raznostnykh uravnenii, ed. A. N. Sharkovskii, Institut matem. AN USSR, Kiev, 1980, 137–145
[26] Efremova L. S., “$C^1$-Smooth $\Omega$-Stable Skew Products and CompletelyGeometrically Integrable Self-Maps of $3D$-Tori, I: $\Omega$-Stability”, Regular and Chaotic Dynamics, 29:3 (2024), 491–514 | DOI | MR | Zbl
[27] Efremova L. S., New Developments in Discrete Dynamical Systems, Difference Equations and Applications, Springer Proc. Math. Statist, Springer, New York, 2024
[28] Kuratovskii K., Topologiya, v. 1, Mir, M., 1966, 594 pp. | MR
[29] Anosov D. V., Dinamicheskie sistemy v 60-e gody: giperbolicheskaya revolyutsiya. Matematicheskie sobytiya XX veka, Fazis, M., 2003
[30] Balibrea F., Guirao J. L. G., Casado J. I. M., “A triangular map on $I^2$ whose $\omega$-limit sets are allcompact interval of $\{0\}\times I$”, Discrete Contin. Dyn. Syst, 8:4 (2002), 983–994 | DOI | MR | Zbl
[31] Balibrea F., Guirao J. L. G., Casado J. I. M., “On $\omega$-limit sets of triangular maps on the unit cube”, J. Difference Equ. Appl., 9:3–4 (2003), 289–304 | DOI | MR | Zbl
[32] Raikov D. A., Odnomernyi matematicheskii analiz, Vysshaya shkola, M., 1982, 416 pp. | MR
[33] Zorich V. A., Matematicheskii analiz, v. 1, Nauka, M., 1981, 543 pp.