Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2024_32_6_a3, author = {S. A. Kaschenko and A. O. Tolbey}, title = {Quasinormal forms for systems of two equations with large delay}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {782--795}, publisher = {mathdoc}, volume = {32}, number = {6}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a3/} }
TY - JOUR AU - S. A. Kaschenko AU - A. O. Tolbey TI - Quasinormal forms for systems of two equations with large delay JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2024 SP - 782 EP - 795 VL - 32 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a3/ LA - ru ID - IVP_2024_32_6_a3 ER -
S. A. Kaschenko; A. O. Tolbey. Quasinormal forms for systems of two equations with large delay. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 6, pp. 782-795. http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a3/
[1] Sharkovskii A. N., Maistrenko Yu. L., Romanenko E. Yu., Raznostnye uravneniya i ikh prilozheniya, Naukova dumka, Kiev, 1986, 280 pp. | MR
[2] Kashchenko S. A., “The dynamics of second-order equations with delayed feedback and a large coefficient of delayed control”, Regular and Chaotic Dynamics, 21:7/8 (2016), 811–820 | DOI | MR | Zbl
[3] Giacomelli G., Politi A., “Relationship between delayed and spatially extended dynamical systems”, Physical review letters, 76:15 (1996), 2686 | DOI
[4] Wolfrum M., Yanchuk S., “Eckhaus instability in systems with large delay”, Physical review letters, 96:22 (2006), 220201 | DOI
[5] Bestehorn M., Grigorieva E. V., Haken H., Kashchenko S. A., “Order parameters for class-B lasers with a long time delayed feedback”, Physica D: Nonlinear Phenomena, 145:1–2 (2000), 110–129 | DOI | MR | Zbl
[6] Giacomelli G., Politi A., “Multiple scale analysis of delayed dynamical systems”, Physica D: Nonlinear Phenomena, 117:1–4 (1998), 26–42 | DOI | Zbl
[7] Ikeda K., Daido H., Akimoto O., “Optical turbulence: chaotic behavior of transmitted light from a ring cavity”, Physical Review Letters, 45:9 (1980), 709 | DOI
[8] Hale J. K., Theory of Functional Differential Equations, 2, Springer, New York, 1977, 626 pp. | DOI | MR | Zbl
[9] D’Huys O., Vicente R., Erneux T., Danckaert J., Fischer I., “Synchronization properties of network motifs: Influence of coupling delay and symmetry”, Chaos: An Interdisciplinary Journal of Nonlinear Science. 2008/12/03. AIP, 18:3 (2008), 037116 | DOI | MR | Zbl
[10] Van der Sande G., Soriano M. C., Fischer I., Mirasso C., “Dynamics, correlation scaling, and synchronization behavior in rings of delay-coupled oscillators”, Physical Review E, 77:5 (2008), 55202 | DOI
[11] Klinshov V. V., Nekorkin V. I., “Synchronization of time-delay coupled pulse oscillators”, Chaos, Solitons and Fractals, 44:1–3 (2011), 98–107 | DOI | MR
[12] Klinshov V. V., Nekorkin V. I., “Sinkhronizatsiya avtokolebatelnykh setei s zapazdyvayuschimi svyazyami”, Uspekhi Fizicheskikh Nauk, 183:12 (2013), 1323–1336 | DOI
[13] Klinshov V., Shchapin D., Yanchuk S., Nekorkin V., “Jittering waves in rings of pulse oscillators”, Physical Review E, 94:1 (2016), 012206 | DOI | MR
[14] Klinshov V., Shchapin D., Yanchuk S., Wolfrum M., D’Huys O., Nekorkin V., “Embedding the dynamics of a single delay system into a feed-forward ring”, Physical Review E, 96:4 (2017), 042217 | DOI | MR
[15] Yanchuk S., Perlikowski P., “Delay and periodicity”, Physical Review E. APS, 79:4 (2009), 1–9 | DOI | MR
[16] Kaschenko S. A., “Primenenie metoda normalizatsii k izucheniyu dinamikidifferentsialno-raznostnykh uravnenii s malym mnozhitelem pri proizvodnoi”, Differentsialnye uravneniya, 25:8 (1989), 1448–1451 | MR | Zbl
[17] Kashchenko S. A., “Van der Pol equation with a large feedback delay”, Mathematics, 11:6 (2023), 1301 | DOI
[18] Kaschenko S.A., “Normalization in the systems with small diffusion”, Int. J. Bifurc. Chaos Appl. Sci. Eng, 6:6 (1996), 1093–1109 | DOI | MR | Zbl
[19] Kashchenko S. A., “The Ginzburg–Landau equation as a normal form for a second-order difference-differential equation with a large delay”, Computational Mathematics and Mathematical Physics, 38:3 (1998), 443–451 | MR | Zbl
[20] Vasil'eva A. B., Butuzov V. F., Asymptotic expansions of the solutions of singularly perturbed equations, Nauka, Moscow, 1973, 272 pp. | MR
[21] Butuzov V. F., Nefedov N. N., Omel'chenko O., and Recke L., “Boundary layer solutions to singularly perturbed quasilinear systems”, Discrete and Continuous Dynamical Systems – Series B, 27:8 (2022), 4255–4283 | DOI | MR | Zbl
[22] Nefedov N. N., “Development of methods of asymptotic analysis of transitionlayers in reaction–diffusion–advection equations: theory and applications”, Computational Mathematics and Mathematical Physics, 61:12 (2021), 2068–2087 | DOI | MR | Zbl
[23] Nefedov N. N., Nikulin E. I., “Existence and asymptotic stability of periodic solutions of the reaction-diffusion equations in the case of a rapid reaction”, Russian Journal of Mathematical Physics, 25:1 (2018), 88–101 | DOI | MR | Zbl
[24] Bruno A. D., Local Methods in Nonlinear Differential Equations, Translated from the Russian by W Hovingh, C. S. Coleman, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1989, 348 pp. | DOI | MR | Zbl
[25] Hartman P., Ordinary Differential Equations, 2, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002, 642 pp. | DOI | MR