Quasinormal forms for systems of two equations with large delay
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 6, pp. 782-795.

Voir la notice de l'article provenant de la source Math-Net.Ru

A system of two equations with delay is considered. The purpose of this work is to study the local dynamics of this system under the assumption that the delay parameter is sufficiently large. Critical cases in the problem of stability of an equilibrium state are identified and it is shown that they have infinite dimension. Methods. The research is based on the use of special methods of infinite-dimensional normalization. Classical methods based on the application of the theory of invariant integral manifolds and normal forms turn out to be directly inapplicable. Results. As the main results, special nonlinear boundary value problems are constructed, which play the role of normal forms. Their nonlocal dynamics determine the behavior of all solutions of the original system in the vicinity of the equilibrium state.  
Keywords: dynamics, stability, delay, quasinormal forms, singular perturbations
@article{IVP_2024_32_6_a3,
     author = {S. A. Kaschenko and A. O. Tolbey},
     title = {Quasinormal forms for systems of two equations with large delay},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {782--795},
     publisher = {mathdoc},
     volume = {32},
     number = {6},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a3/}
}
TY  - JOUR
AU  - S. A. Kaschenko
AU  - A. O. Tolbey
TI  - Quasinormal forms for systems of two equations with large delay
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2024
SP  - 782
EP  - 795
VL  - 32
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a3/
LA  - ru
ID  - IVP_2024_32_6_a3
ER  - 
%0 Journal Article
%A S. A. Kaschenko
%A A. O. Tolbey
%T Quasinormal forms for systems of two equations with large delay
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2024
%P 782-795
%V 32
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a3/
%G ru
%F IVP_2024_32_6_a3
S. A. Kaschenko; A. O. Tolbey. Quasinormal forms for systems of two equations with large delay. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 6, pp. 782-795. http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a3/

[1] Sharkovskii A. N., Maistrenko Yu. L., Romanenko E. Yu., Raznostnye uravneniya i ikh prilozheniya, Naukova dumka, Kiev, 1986, 280 pp. | MR

[2] Kashchenko S. A., “The dynamics of second-order equations with delayed feedback and a large coefficient of delayed control”, Regular and Chaotic Dynamics, 21:7/8 (2016), 811–820 | DOI | MR | Zbl

[3] Giacomelli G., Politi A., “Relationship between delayed and spatially extended dynamical systems”, Physical review letters, 76:15 (1996), 2686 | DOI

[4] Wolfrum M., Yanchuk S., “Eckhaus instability in systems with large delay”, Physical review letters, 96:22 (2006), 220201 | DOI

[5] Bestehorn M., Grigorieva E. V., Haken H., Kashchenko S. A., “Order parameters for class-B lasers with a long time delayed feedback”, Physica D: Nonlinear Phenomena, 145:1–2 (2000), 110–129 | DOI | MR | Zbl

[6] Giacomelli G., Politi A., “Multiple scale analysis of delayed dynamical systems”, Physica D: Nonlinear Phenomena, 117:1–4 (1998), 26–42 | DOI | Zbl

[7] Ikeda K., Daido H., Akimoto O., “Optical turbulence: chaotic behavior of transmitted light from a ring cavity”, Physical Review Letters, 45:9 (1980), 709 | DOI

[8] Hale J. K., Theory of Functional Differential Equations, 2, Springer, New York, 1977, 626 pp. | DOI | MR | Zbl

[9] D’Huys O., Vicente R., Erneux T., Danckaert J., Fischer I., “Synchronization properties of network motifs: Influence of coupling delay and symmetry”, Chaos: An Interdisciplinary Journal of Nonlinear Science. 2008/12/03. AIP, 18:3 (2008), 037116 | DOI | MR | Zbl

[10] Van der Sande G., Soriano M. C., Fischer I., Mirasso C., “Dynamics, correlation scaling, and synchronization behavior in rings of delay-coupled oscillators”, Physical Review E, 77:5 (2008), 55202 | DOI

[11] Klinshov V. V., Nekorkin V. I., “Synchronization of time-delay coupled pulse oscillators”, Chaos, Solitons and Fractals, 44:1–3 (2011), 98–107 | DOI | MR

[12] Klinshov V. V., Nekorkin V. I., “Sinkhronizatsiya avtokolebatelnykh setei s zapazdyvayuschimi svyazyami”, Uspekhi Fizicheskikh Nauk, 183:12 (2013), 1323–1336 | DOI

[13] Klinshov V., Shchapin D., Yanchuk S., Nekorkin V., “Jittering waves in rings of pulse oscillators”, Physical Review E, 94:1 (2016), 012206 | DOI | MR

[14] Klinshov V., Shchapin D., Yanchuk S., Wolfrum M., D’Huys O., Nekorkin V., “Embedding the dynamics of a single delay system into a feed-forward ring”, Physical Review E, 96:4 (2017), 042217 | DOI | MR

[15] Yanchuk S., Perlikowski P., “Delay and periodicity”, Physical Review E. APS, 79:4 (2009), 1–9 | DOI | MR

[16] Kaschenko S. A., “Primenenie metoda normalizatsii k izucheniyu dinamikidifferentsialno-raznostnykh uravnenii s malym mnozhitelem pri proizvodnoi”, Differentsialnye uravneniya, 25:8 (1989), 1448–1451 | MR | Zbl

[17] Kashchenko S. A., “Van der Pol equation with a large feedback delay”, Mathematics, 11:6 (2023), 1301 | DOI

[18] Kaschenko S.A., “Normalization in the systems with small diffusion”, Int. J. Bifurc. Chaos Appl. Sci. Eng, 6:6 (1996), 1093–1109 | DOI | MR | Zbl

[19] Kashchenko S. A., “The Ginzburg–Landau equation as a normal form for a second-order difference-differential equation with a large delay”, Computational Mathematics and Mathematical Physics, 38:3 (1998), 443–451 | MR | Zbl

[20] Vasil'eva A. B., Butuzov V. F., Asymptotic expansions of the solutions of singularly perturbed equations, Nauka, Moscow, 1973, 272 pp. | MR

[21] Butuzov V. F., Nefedov N. N., Omel'chenko O., and Recke L., “Boundary layer solutions to singularly perturbed quasilinear systems”, Discrete and Continuous Dynamical Systems – Series B, 27:8 (2022), 4255–4283 | DOI | MR | Zbl

[22] Nefedov N. N., “Development of methods of asymptotic analysis of transitionlayers in reaction–diffusion–advection equations: theory and applications”, Computational Mathematics and Mathematical Physics, 61:12 (2021), 2068–2087 | DOI | MR | Zbl

[23] Nefedov N. N., Nikulin E. I., “Existence and asymptotic stability of periodic solutions of the reaction-diffusion equations in the case of a rapid reaction”, Russian Journal of Mathematical Physics, 25:1 (2018), 88–101 | DOI | MR | Zbl

[24] Bruno A. D., Local Methods in Nonlinear Differential Equations, Translated from the Russian by W Hovingh, C. S. Coleman, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1989, 348 pp. | DOI | MR | Zbl

[25] Hartman P., Ordinary Differential Equations, 2, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002, 642 pp. | DOI | MR