Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2024_32_6_a2, author = {K. E. Morozov}, title = {On non-conservative perturbations of three-dimensional integrable systems}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {766--780}, publisher = {mathdoc}, volume = {32}, number = {6}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a2/} }
TY - JOUR AU - K. E. Morozov TI - On non-conservative perturbations of three-dimensional integrable systems JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2024 SP - 766 EP - 780 VL - 32 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a2/ LA - ru ID - IVP_2024_32_6_a2 ER -
K. E. Morozov. On non-conservative perturbations of three-dimensional integrable systems. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 6, pp. 766-780. http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a2/
[1] Morozov A. D., Shilnikov L. P., “O nekonservativnykh periodicheskikh sistemakh, blizkikh k dvumernym gamiltonovym”, PMM, 47:3 (1983), 385–395 | DOI | MR
[2] Morozov A. D., Rezonansy, tsikly i khaos v kvazikonservativnykh sistemakh, Regulyarnaya i khaoticheskaya dinamika, Moskva-Izhevsk, 2005, 420 pp.
[3] Morozov A. D., Morozov K. E., “Quasiperiodic perturbationsof two-dimensional Hamiltonian systems”, Differential Equations, 53:12 (2017), 1607–1615 | DOI | MR | Zbl
[4] Morozov A. D., Morozov K. E., “Global dynamics of systems closeto Hamiltonian ones under nonconservative quasi-periodicperturbation”, Russian Journal of Nonlinear Dynamics, 15:2 (2019), 187–198 | DOI | MR | Zbl
[5] Morozov A. D., Morozov K. E., “Quasi–periodic perturbations of two-dimensional Hamiltonian systems with nonmonotone rotation”, Journal of Mathematical Sciences, 6:255 (2021), 741–752 | DOI | MR | Zbl
[6] Morozov A. D., Morozov K. E., “Synchronization of quasi–periodic oscillations in nearly Hamiltonian systems: The degenerate case”, Chaos, 31:8 (2021), 083109 | DOI | MR | Zbl
[7] Morozov A. D., Morozov K. E., “Degenerate resonances and synchronization in nearly Hamiltonian systems under quasi–periodic perturbations”, Regular and Chaotic Dynamics, 27:5 (2022), 572–585 | DOI | MR | Zbl
[8] Pontryagin L. S., “O dinamicheskikh sistemakh, blizkikh k gamiltonovym”, Zhurn. eksperim. i teoret. fiziki, 4:9 (1934), 883–885
[9] Andronov A. A., Leontovich E. A., Gordon I. I., Maier A. G., Teoriya bifurkatsii dinamicheskikh sistem na ploskosti, Nauka, M., 1967, 488 pp. | MR
[10] Zhevakin S. A., “Ob otyskanii predelnykh tsiklov v sistemakh, blizkikh k nekotorym nelineinym”, PMM, 15:2 (1951), 237–244 | MR
[11] Melnikov V. K., “Ob ustoichivosti tsentra pri periodicheskikh po vremeni vozmuscheniyakh”, Tr. Mosk. mat. obsch, 12 (1963), 3–52 | Zbl
[12] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989, 472 pp. | DOI | MR
[13] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Fizmatgiz, M., 1958, 408 pp. | MR
[14] Anosov D. V., “Grubye sistemy”, Tr. MIAN SSSR, 169 (1985)
[15] Hale J. K., Ordinary differential equations, R. E. Krieger Pub. Co., N Y, 1980, 361 pp. | MR | Zbl
[16] Yudovich V. I., “Asimptotika predelnykh tsiklov sistemy Lorentsa pri bolshikh chislakh Releya”, Dep. v VINITI, 1978, no. 2611-78, 2–8
[17] Robbins K. A., “Periodic solutions and bifurcation structure at high R in the Lorenz model”, SIAM Journal on Applied Mathematics, 36:3 (1979), 457–472 | DOI | MR | Zbl
[18] Pokrovskii L. A., “Reshenie sistemy uravnenii Lorentsa v asimptoticheskom predele bolshogo chisla Releya. I. Sistema Lorentsa v prosteishei kvantovoi modeli lazera i prilozhenie k nei metoda usredneniya”, Teoreticheskaya i matematicheskaya fizika, 62:2 (1985), 272–290 | DOI | MR
[19] Afraimovich V. S., Bykov V. V., Shilnikov L. P., “O prityagivayuschikh negrubykh predelnykh mnozhestvakh tipa attraktora Lorentsa”, Tr. MMO, 44 (1982), 150–212 | Zbl