Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2024_32_6_a10, author = {A. \`E. Rassadin}, title = {An asymptotic solution for the {SIS} epidemic model, taking into account migration and diffusion}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {908--920}, publisher = {mathdoc}, volume = {32}, number = {6}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a10/} }
TY - JOUR AU - A. È. Rassadin TI - An asymptotic solution for the SIS epidemic model, taking into account migration and diffusion JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2024 SP - 908 EP - 920 VL - 32 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a10/ LA - ru ID - IVP_2024_32_6_a10 ER -
%0 Journal Article %A A. È. Rassadin %T An asymptotic solution for the SIS epidemic model, taking into account migration and diffusion %J Izvestiya VUZ. Applied Nonlinear Dynamics %D 2024 %P 908-920 %V 32 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a10/ %G ru %F IVP_2024_32_6_a10
A. È. Rassadin. An asymptotic solution for the SIS epidemic model, taking into account migration and diffusion. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 6, pp. 908-920. http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a10/
[1] Lotka A. J., Elements of physical biology, Williams Wilkins, 1925, 460 pp. | MR
[2] Volterra V., “Variazioni e fluttuazioni del numero d’individui in specie animali conviventi”, Memoria della Reale Accademia Nazionale dei Lincei, 2 (1926), 31–113 | MR
[3] Bazykin A. D., Matematicheskaya biofizika vzaimodeistvuyuschikh populyatsii, Nauka, M, 1985, 181 pp.
[4] Riznichenko G. Yu., Lektsii po matematicheskim modelyam v biologii, Institut kompyuternykh issledovanii, NITs «Regulyarnaya i khaoticheskaya dinamika», M.-Izhevsk, 2010, 560 pp.
[5] Frisman V. Ya., Kulakov M. P., Revutskaya O. L., Zhdanova O. L., Neverova G. P., “Osnovnye napravleniya i obzor sovremennogo sostoyaniya issledovanii dinamiki strukturirovannykh i vzaimodeistvuyuschikh populyatsii”, Kompyuternye issledovaniya i modelirovanie, 11:1 (2019), 119–-151 | DOI | MR
[6] Belotelov N. V., Konovalenko I. A., “Modelirovanie vliyaniya podvizhnosti osobei na prostranstvenno-vremennuyu dinamiku populyatsii na osnove kompyuternoi modeli”, Kompyuternye issledovaniya i modelirovanie, 8:2 (2016), 297–-305 | DOI
[7] Kulakov M. P., Frisman V. Ya., “Podkhody k issledovaniyu multistabilnosti prostranstvenno-vremennoi dinamiki dvukhvozrastnoi populyatsii”, Izvestiya vuzov. PND, 28:6 (2020), 653–-678 | DOI
[8] Brauer F., Castillo-Chavez C., Feng Z., Mathematical Models in Epidemiology, Springer Science + Business Media LLC, part of Springer Nature, 2019, 619 pp. | DOI | MR | Zbl
[9] Kant S., Kumar V., “Stability analysis of predator–prey system with migrating prey and disease infection in both species”, Applied Mathematical Modelling, 42 (2017), 509–-539 | DOI | MR | Zbl
[10] Shabunin A. V., “SIRS-model rasprostraneniya infektsii s dinamicheskim regulirovaniem chislennosti populyatsii: Issledovanie metodom veroyatnostnykh kletochnykh avtomatov”, Izvestiya vuzov. PND, 27:2 (2019), 5–-20 | DOI
[11] Arif M., Abodayeh K., Ejaz A., “On the stability of the diffusive and non-diffusive predator-prey system with consuming resources and disease in prey species”, Mathematical Biosciences and Engineering, 20 (2023), 5066–-5093 | DOI | MR
[12] Kermack W. O., McKendrick A. G., “Contributions to the mathematical theory of epidemics. II. — The problem of endemicity”, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 138:834 (1932), 55–83 | DOI | Zbl
[13] Aristov V. V., Stroganov A. V., Yastrebov A. D., “Primenenie modeli kineticheskogo tipa dlya izucheniya prostranstvennogo rasprostraneniya COVID-19”, Kompyuternye issledovaniya i modelirovanie, 13:3 (2021), 611–-627 | DOI
[14] Bugrov V. O., Rassadin A. E., “Model rasprostraneniya pandemii s dvumya ustoichivymi sostoyaniyami”, Matematicheskoe modelirovanie, chislennye metody i kompleksy programm, X Mezhdunarodnaya nauchnaya molodezhnaya shkola-seminar imeni E. V. Voskresenskogo (Saransk, 14–18 iyulya 2022), 40–48
[15] Bärwolff G., “A local and time resolution of the COVID-19 propagation — a two-dimensional approach for Germany including diffusion phenomena to describe the spatial spread of the COVID-19 pandemic”, Physics, 3 (2021), 536–548 | DOI | MR
[16] Viguerie A., Veneziani A., Lorenzo G., Baroli D., Aretz-Nellesen N., Patton A., Yankeelov T. E., Reali A., Hughes T. J. R., Auricchio F., “Diffusion–reaction compartmental models formulated in a continuummechanics framework: application to COVID-19, mathematical analysis, and numerical study”, Computational Mechanics, 66 (2020), 1131–1152 | DOI | MR | Zbl
[17] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1966, 724 pp. | MR
[18] Kolmogorov A. N., Petrovskii I. G., Piskunov N. S., “Issledovanie uravneniya diffuzii, soedinennoi s vozrastaniem veschestva, i ego primenenie k odnoi biologicheskoi probleme”, Byulleten MGU. Sektsiya A. Matematika i mekhanika, 1 (1937), 1–26
[19] Berman V. S., “Ob asimptoticheskom reshenii odnoi nestatsionarnoi zadachi o rasprostranenii fronta khimicheskoi reaktsii”, Doklady AN SSSR, 242:2 (1978), 265–267 | MR | Zbl
[20] Kardar M., Parisi G., Zhang Y. C., “Dynamical scaling of growing interfaces”, Physical Review Letters, 56 (1986), 889–892 | DOI | Zbl