An asymptotic solution for the SIS epidemic model, taking into account migration and diffusion
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 6, pp. 908-920.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this work is to propose and investigate a simple and effective model of an epidemic in an animal population that takes into account migration along the plane of both diseased and healthy individuals. Within the framework of this model, the spatial migration of a population is described by introducing both diffusion and advective terms into its equations. Methods. In this paper, a method of many scales was used to find an asymptotic solution to the system of equations of the epidemic. Solutions of auxiliary linear equations of the parabolic type arising during this procedure were found using the Poisson integral. The simplification of the initial system of equations of the model is based on the assumption that the sum of densities of healthy and sick individuals on a single-connected region of large diameter on the plane is constant at the initial moment of time. Results. It is shown that in this case, designed for a slowly changing initial density of sick individuals concentrated inside this area at a considerable distance from its boundaries, the asymptotic solution of the model describes the effect of merging several spatially spaced small outbreaks of the disease into one large outbreak during migration of the entire population as a whole. In particular, for such an initial density obtained by the functional transformation of a Gaussian, a circular plateau is formed over long periods with an effective radius that grows linearly over time. Conclusion. The constructed asymptotic solution of the epidemic model proposed in this paper is simple in form and describes the transfer of the disease on a locally flat area of the earth’s surface without the use of numerical methods. This solution is convenient when describing the migration of a sick population under the influence of flooding, forest fire, man-made disaster with contamination of the area, etc.
Keywords: moving coordinate system, small parameter, slow variables, the logistic curve, the method of variation of the constant, the Cauchy problem, the Kardar-Parisi-Zhang equation, the uniformity of the asymptotic expansion, formation of structures
@article{IVP_2024_32_6_a10,
     author = {A. \`E. Rassadin},
     title = {An asymptotic solution for the {SIS} epidemic model, taking into account migration and diffusion},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {908--920},
     publisher = {mathdoc},
     volume = {32},
     number = {6},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a10/}
}
TY  - JOUR
AU  - A. È. Rassadin
TI  - An asymptotic solution for the SIS epidemic model, taking into account migration and diffusion
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2024
SP  - 908
EP  - 920
VL  - 32
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a10/
LA  - ru
ID  - IVP_2024_32_6_a10
ER  - 
%0 Journal Article
%A A. È. Rassadin
%T An asymptotic solution for the SIS epidemic model, taking into account migration and diffusion
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2024
%P 908-920
%V 32
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a10/
%G ru
%F IVP_2024_32_6_a10
A. È. Rassadin. An asymptotic solution for the SIS epidemic model, taking into account migration and diffusion. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 6, pp. 908-920. http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a10/

[1] Lotka A. J., Elements of physical biology, Williams Wilkins, 1925, 460 pp. | MR

[2] Volterra V., “Variazioni e fluttuazioni del numero d’individui in specie animali conviventi”, Memoria della Reale Accademia Nazionale dei Lincei, 2 (1926), 31–113 | MR

[3] Bazykin A. D., Matematicheskaya biofizika vzaimodeistvuyuschikh populyatsii, Nauka, M, 1985, 181 pp.

[4] Riznichenko G. Yu., Lektsii po matematicheskim modelyam v biologii, Institut kompyuternykh issledovanii, NITs «Regulyarnaya i khaoticheskaya dinamika», M.-Izhevsk, 2010, 560 pp.

[5] Frisman V. Ya., Kulakov M. P., Revutskaya O. L., Zhdanova O. L., Neverova G. P., “Osnovnye napravleniya i obzor sovremennogo sostoyaniya issledovanii dinamiki strukturirovannykh i vzaimodeistvuyuschikh populyatsii”, Kompyuternye issledovaniya i modelirovanie, 11:1 (2019), 119–-151 | DOI | MR

[6] Belotelov N. V., Konovalenko I. A., “Modelirovanie vliyaniya podvizhnosti osobei na prostranstvenno-vremennuyu dinamiku populyatsii na osnove kompyuternoi modeli”, Kompyuternye issledovaniya i modelirovanie, 8:2 (2016), 297–-305 | DOI

[7] Kulakov M. P., Frisman V. Ya., “Podkhody k issledovaniyu multistabilnosti prostranstvenno-vremennoi dinamiki dvukhvozrastnoi populyatsii”, Izvestiya vuzov. PND, 28:6 (2020), 653–-678 | DOI

[8] Brauer F., Castillo-Chavez C., Feng Z., Mathematical Models in Epidemiology, Springer Science + Business Media LLC, part of Springer Nature, 2019, 619 pp. | DOI | MR | Zbl

[9] Kant S., Kumar V., “Stability analysis of predator–prey system with migrating prey and disease infection in both species”, Applied Mathematical Modelling, 42 (2017), 509–-539 | DOI | MR | Zbl

[10] Shabunin A. V., “SIRS-model rasprostraneniya infektsii s dinamicheskim regulirovaniem chislennosti populyatsii: Issledovanie metodom veroyatnostnykh kletochnykh avtomatov”, Izvestiya vuzov. PND, 27:2 (2019), 5–-20 | DOI

[11] Arif M., Abodayeh K., Ejaz A., “On the stability of the diffusive and non-diffusive predator-prey system with consuming resources and disease in prey species”, Mathematical Biosciences and Engineering, 20 (2023), 5066–-5093 | DOI | MR

[12] Kermack W. O., McKendrick A. G., “Contributions to the mathematical theory of epidemics. II. — The problem of endemicity”, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 138:834 (1932), 55–83 | DOI | Zbl

[13] Aristov V. V., Stroganov A. V., Yastrebov A. D., “Primenenie modeli kineticheskogo tipa dlya izucheniya prostranstvennogo rasprostraneniya COVID-19”, Kompyuternye issledovaniya i modelirovanie, 13:3 (2021), 611–-627 | DOI

[14] Bugrov V. O., Rassadin A. E., “Model rasprostraneniya pandemii s dvumya ustoichivymi sostoyaniyami”, Matematicheskoe modelirovanie, chislennye metody i kompleksy programm, X Mezhdunarodnaya nauchnaya molodezhnaya shkola-seminar imeni E. V. Voskresenskogo (Saransk, 14–18 iyulya 2022), 40–48

[15] Bärwolff G., “A local and time resolution of the COVID-19 propagation — a two-dimensional approach for Germany including diffusion phenomena to describe the spatial spread of the COVID-19 pandemic”, Physics, 3 (2021), 536–548 | DOI | MR

[16] Viguerie A., Veneziani A., Lorenzo G., Baroli D., Aretz-Nellesen N., Patton A., Yankeelov T. E., Reali A., Hughes T. J. R., Auricchio F., “Diffusion–reaction compartmental models formulated in a continuummechanics framework: application to COVID-19, mathematical analysis, and numerical study”, Computational Mechanics, 66 (2020), 1131–1152 | DOI | MR | Zbl

[17] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1966, 724 pp. | MR

[18] Kolmogorov A. N., Petrovskii I. G., Piskunov N. S., “Issledovanie uravneniya diffuzii, soedinennoi s vozrastaniem veschestva, i ego primenenie k odnoi biologicheskoi probleme”, Byulleten MGU. Sektsiya A. Matematika i mekhanika, 1 (1937), 1–26

[19] Berman V. S., “Ob asimptoticheskom reshenii odnoi nestatsionarnoi zadachi o rasprostranenii fronta khimicheskoi reaktsii”, Doklady AN SSSR, 242:2 (1978), 265–267 | MR | Zbl

[20] Kardar M., Parisi G., Zhang Y. C., “Dynamical scaling of growing interfaces”, Physical Review Letters, 56 (1986), 889–892 | DOI | Zbl