Discrete traveling waves in a relay system of differential-difference equations modeling a fully connected network of synaptically connected neurons
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 5, pp. 654-669.

Voir la notice de l'article provenant de la source Math-Net.Ru

Purpose. Consider a system of differential equations with delay, which models a fully connected chain of $m + 1$ neurons with delayed synoptic communication. For this fully connected system, construct periodic solutions in the form of discrete traveling waves. This means that all components are represented by the same periodic function $u(t)$ with a shift that is a multiple of some parameter $\Delta$ (to be found). Methods. To search for the described solutions, in this work we move from the original system to an equation for an unknown function $u(t)$, containing m ordered delays, differing with step $\Delta$. It performs an exponential substitution (typical of equations of the Volterra type) in order to obtain a relay equation of a special form. Results. For the resulting equation, a parameter range is found in which it is possible to construct a periodic solution with period $T$ depending on the parameter $\Delta$. For the found period formula $T=T(\Delta)$, it is possible to prove the solvability of the period equation, that is, to prove the existence of non-zero parameters - integer $p$ and real $\Delta$ — satisfying the equation $(m + 1)\Delta = pT(\Delta)$. The constructed function u(t) has a bursting effect. This means that $u(t)$ has a period of n high spikes, followed by a period of low values. Conclusion. The existence of a suitable parameter $\Delta$ ensures the existence of a periodic solution in the form of a discrete traveling wave for the original system. Due to the choice of permutation, the coexistence of $(m + 1)!$ periodic solutions is ensured. 
Keywords: differential-difference equations, fully coupled system, discrete traveling waves, bursting effect, periodic solutions, neuron modeling
@article{IVP_2024_32_5_a6,
     author = {I. E. Preobrazenski and M. M. Preobrazhenskaya},
     title = {Discrete traveling waves in a relay system of differential-difference equations modeling a fully connected network of synaptically connected neurons},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {654--669},
     publisher = {mathdoc},
     volume = {32},
     number = {5},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2024_32_5_a6/}
}
TY  - JOUR
AU  - I. E. Preobrazenski
AU  - M. M. Preobrazhenskaya
TI  - Discrete traveling waves in a relay system of differential-difference equations modeling a fully connected network of synaptically connected neurons
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2024
SP  - 654
EP  - 669
VL  - 32
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2024_32_5_a6/
LA  - ru
ID  - IVP_2024_32_5_a6
ER  - 
%0 Journal Article
%A I. E. Preobrazenski
%A M. M. Preobrazhenskaya
%T Discrete traveling waves in a relay system of differential-difference equations modeling a fully connected network of synaptically connected neurons
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2024
%P 654-669
%V 32
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2024_32_5_a6/
%G ru
%F IVP_2024_32_5_a6
I. E. Preobrazenski; M. M. Preobrazhenskaya. Discrete traveling waves in a relay system of differential-difference equations modeling a fully connected network of synaptically connected neurons. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 5, pp. 654-669. http://geodesic.mathdoc.fr/item/IVP_2024_32_5_a6/

[1] Glyzin S. D., Preobrazhenskaia M. M., “Multistability and bursting in a pair of delay coupled oscillators with a relay nonlinearity”, IFAC-PapersOnLine, 52:18 (2019), 109–114 | DOI

[2] Glyzin S. D., Preobrazhenskaia M. M., “Two delay-coupled neurons with a relay nonlinearity”, Advances in Neural Computation, Machine Learning, and Cognitive Research III (NEUROINFORMATICS 2019) (Moscow, 7–11 October 2019 Studies in Computational Intelligence), eds. Kryzhanovsky B., Dunin-Barkowski W., Redko V., Tiumentsev Y., Springer, Cham | DOI | MR

[3] Preobrazhenskaia M. M., “Three unidirectionally synaptically coupled bursting neurons”, Advances in Neural Computation, Machine Learning, and Cognitive Research V, NEUROINFORMATICS 2021, Studies in Computational Intelligence, 1008, eds. Kryzhanovsky B., Dunin-Barkowski W., Redko V., Tiumentsev Y., Klimov V. V., Springer, Cham, 2022, 135–141 | DOI | MR

[4] Kolesov A. Yu., Mischenko E. F., Rozov N. Kh., “Ob odnoi modifikatsii uravneniya Khatchinsona”, Zh. vychisl. matem. i matem. fiz., 50:12 (2010), 2099–2112 | DOI | MR | Zbl

[5] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Relaksatsionnye avtokolebaniya v setyakh impulsnykh neironov”, UMN, 70:3(423) (2015), 3–76 | DOI | MR | Zbl

[6] Somers D., Kopell N., “Rapid synchronization through fast threshold modulation”, Biol. Cybern, 68 (1993), 393–407 | DOI

[7] Terman D., “An introduction to dynamical systems and neuronal dynamics”, Tutorials in Mathematical Biosciences I: Mathematical Neuroscience, Springer, Berlin, Heidelberg, 2005, 21–68 | DOI

[8] Terman D. “An introduction to dynamical systems and neuronal dynamics”, Tutorials in Mathematical Biosciences I: Mathematical Neuroscience, Springer, Berlin, Heidelberg, 2005, 21–68 | DOI

[9] Somers D., Kopell N., “Anti-phase solutions inrelaxation oscillators coupled through excitatory interactions”, J. Math. Biol., 33 (1995), 261–280 | DOI | MR | Zbl

[10] Glyzin S. D., Kolesov A. Yu, Rozov N. Kh., “Ob odnom sposobe matematicheskogo modelirovaniya khimicheskikh sinapsov”, Differentsialnye uravneniya, 49:10 (2013), 1227–1244 | DOI | MR | Zbl

[11] Preobrazhenskaya M. M., “Relaksatsionnye tsikly v modeli sinapticheski vzaimodeistvuyuschikh ostsillyatorov”, Modelirovanie i analiz informatsionnykh sistem, 24:2 (2017), 186–204 | DOI | MR

[12] Preobrazhenskaya M. M., “Impulsno-refrakternyi rezhim v koltsevoi tsepi sinapticheski svyazannykh ostsillyatorov neironnogo tipa”, Model. i analiz inform. sistem, 24:5 (2017) | DOI | MR

[13] Glyzin S. D., Kolesov A. Yu., “Ob odnom sposobe matematicheskogo modelirovaniya elektricheskikh sinapsov”, Differents. uravneniya, 58:7 (2022) | DOI | Zbl

[14] Glyzin S. D., Kolesov A. Yu., “Periodicheskie rezhimy dvukhklasternoi sinkhronizatsii v polnosvyaznykh setyakh nelineinykh ostsillyatorov”, TMF, 212:2 (2022) | DOI | Zbl

[15] Glyzin D. S., Glyzin S. D., Kolesov A. Yu., “Okhota na khimer v polnosvyaznykh setyakh nelineinykh ostsillyatorov”, Izvestiya vuzov. PND, 30:2 (2022) | DOI

[16] Glyzin S. D., Kolesov A. Yu., “Beguschie volny v polnosvyaznykh setyakh nelineinykh ostsillyatorov”, Zh. vychisl. matem. i matem. fiz, 61:1 (2022), 71–89 | DOI

[17] Glyzin S. D., Kolesov A. Yu, Rozov N. Kh., “Yavlenie bufernosti v koltsevykh gennykh setyakh”, TMF, 187:3 (2016) | DOI | MR | Zbl