Searching the structure of couplings in a chaotic maps ensemble by means of neural networks
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 5, pp. 636-653.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this work is development and research of an algorithm for determining the structure of couplings of an ensemble of chaotic self-oscillating systems. The method is based on the determination of causality by Granger and the use of direct propagation artificial neural networks trained with regularization. Results. We have considered a method for recognition structure of couplings of a network of chaotic maps based on the Granger causality principle and artificial neural networks approach. The algorithm demonstrates its efficiency on the example of small ensembles of maps with diffusion couplings. In addition to determining the network topology, it can be used to estimate the magnitue of the couplings. Accuracy of the method essencially depends on the observed oscillatory regime. It effectively works only in the case of homogeneous space-time chaos. Discussion. Although the method has shown its effectiveness for simple mathematical models, its applicability for real systems depends on a number of factors, such as sensitivity to noise, to possible distortion of the waveforms, the presence of crosstalks and external noise etc. These questions require additional research.
Keywords: dynamical chaos, artificial neural networks, ensembles of maps, couplings structure identification
@article{IVP_2024_32_5_a5,
     author = {A. V. Shabunin},
     title = {Searching the structure of couplings in a chaotic maps ensemble by means of neural networks},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {636--653},
     publisher = {mathdoc},
     volume = {32},
     number = {5},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2024_32_5_a5/}
}
TY  - JOUR
AU  - A. V. Shabunin
TI  - Searching the structure of couplings in a chaotic maps ensemble by means of neural networks
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2024
SP  - 636
EP  - 653
VL  - 32
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2024_32_5_a5/
LA  - ru
ID  - IVP_2024_32_5_a5
ER  - 
%0 Journal Article
%A A. V. Shabunin
%T Searching the structure of couplings in a chaotic maps ensemble by means of neural networks
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2024
%P 636-653
%V 32
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2024_32_5_a5/
%G ru
%F IVP_2024_32_5_a5
A. V. Shabunin. Searching the structure of couplings in a chaotic maps ensemble by means of neural networks. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 5, pp. 636-653. http://geodesic.mathdoc.fr/item/IVP_2024_32_5_a5/

[1] Cremers J., Hübler A., “Construction of differential equations from experimental data”, Zeitschrift für Naturforschung A, 42:8 (1987), 797–802 | DOI | MR

[2] Crutchfield J.\;P., McNamara B.\;S., “Equations of motion from a data series”, Complex Systems, 1:3 (1987), 417–452 | MR | Zbl

[3] Pavlov A.\;N., Yanson N.\;B., “Primenenie metodiki rekonstruktsii matematicheskoi modeli k kardiogramme”, Izvestiya vuzov. Prikladnaya nelineinaya dinamika, 5:1 (1997), 93–108

[4] Anishchenko V.\;S., Pavlov A.\;N., “Global reconstruction in application to multichannel communication”, Physical Review E, 57:2 (1998), 2455–2457 | DOI

[5] Mukhin D.\;N., Feigin A.\;M., Loskutov E.\;M., Molkov Y.\;I., “Modified Bayesian approach for the reconstruction of dynamical systems from time series”, Physical Review E, 73:3 (2006), 036211 | DOI

[6] Takens F., “Detecting strange attractors in turbulence”, Dynamical Systems and Turbulence (Lecture Notes in Mathematics), 898 (1980), 366–381 | DOI | MR

[7] Granger C.\;W.\;J., “Investigating causal relations by econometric models and cross-spectral methods”, Econometrica, 37:3 (1969), 424–438 | DOI | Zbl

[8] Granger C.\;W.\;J., “Testing for causality. A personal viewpoint”, Journal of Economic Dynamics and Control, 2 (1980), 329–352 | DOI | MR

[9] Sysoev I.\;V., Diagnostika svyazannosti po khaoticheskim signalam nelineinykh sistem: reshenie obratnykh zadach, KUBiK, Saratov, 2019, 46 pp.

[10] Hesse R., Molle E., Arnold M., Schack B., “The use of time-variant EEG Granger causality for inspecting directed interdependencies of neural assemblies”, Journal of Neuroscience Methods, 124:1 (2003), 27–44 | DOI

[11] Mokhov I.\;I., Smirnov D.\;A., “Diagnostika prichinno-sledstvennoi svyazi solnechnoi aktivnosti i globalnoi pripoverkhnostnoi temperatury Zemli”, Izvestiya RAN. Fizika atmosfery i okeana, 44:3 (2008), 283–293 | DOI | MR

[12] Mokhov I.\;I., Smirnov D.\;A., “Empiricheskie otsenki vozdeistviya estestvennykh i antropogennykh faktorov na globalnuyu pripoverkhnostnuyu temperaturu”, Doklady Akademii nauk, 426:5 (2009), 679–684 | DOI

[13] Sysoev I.\;V., Karavaev A.\;S., Nakonechnyi P.\;I., “Rol nelineinosti mo­deli v diagnostike svyazei pri patologicheskom tremore metodom grein­dzherovskoiprichinnosti”, Izvestiya vuzov. Prikladnaya nelineinaya dinamika, 18:4 (2010), 81–90 | DOI

[14] Sysoev I.\;V., Sysoeva M.\;V., “Detecting changes in coupling with Granger causality method from time series with fast transient processes”, Physica D: Nonlinear Phenomena, 309 (2015), 9–19 | DOI | Zbl

[15] Chen Y., Rangarajan G., Feng J., Ding M., “AnalyzingMultiple Nonlinear Time Series with Extended Granger Causality”, Physics Letters A, 324:1 (2004), 26–35 | DOI | MR | Zbl

[16] Marinazzo D., Pellicoro M., Stramaglia S., “Nonlinear parametric model for Granger causality of time series”, Physical Review E, 73:6 (2006), 066216 | DOI

[17] Khaikin S., Neironnye seti, Vilyams, M., 2006, 1104 pp.

[18] Galushkin A.\;I., Neironnye seti. Osnovy teorii, Telekom, 2012, 496 pp.

[19] de Oliveira K.\;A., Vannucci A., Da Silva E.\;C., “Using artificial neural networks to forecast chaotic time series”, Physica A, 284:1–4 (2000), 393–404 | DOI

[20] Antipov O.\;I., Neganov V.\;A., “Prognozirovaniei fraktalnyi analiz khaoticheskikh protsessov diskretno-nelineinykh sistems pomoschyu neironnykh setei”, Doklady Akademii nauk, 436:1 (2011) | DOI | Zbl

[21] Tank A., Covert I., Foti N., Shojaie A., Fox E., Neural granger causality for nonlinear time series, 2018, arXiv: 1802.05842

[22] Tikhonov A.\;N., “O nekorrektnykh zadachakh lineinoialgebry i ustoichivom metode ikh resheniya”, Doklady Akademii nauk SSSR, 163:3 (1965), 591–594 | Zbl

[23] Fujisaka H., Yamada T., “Stability theory ofsynchronized motion in coupled-oscillator systems”, Progress of TheoreticalPhysics, 69:1 (1983), 32–47 | DOI | MR | Zbl

[24] Fujisaka H., Yamada T., “Stability theory ofsynchronized motion in coupled-oscillator systems. The mapping approach”, Progress of Theoretical Physics, 70:5 (1983), 1240–1248 | DOI | MR | Zbl

[25] Shabunin A., “Selective properties of diffusivecouplings and their influence on spatiotemporal chaos”, Chaos, 31:7 (2021), 073132 | DOI | MR | Zbl