Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2024_32_5_a5, author = {A. V. Shabunin}, title = {Searching the structure of couplings in a chaotic maps ensemble by means of neural networks}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {636--653}, publisher = {mathdoc}, volume = {32}, number = {5}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2024_32_5_a5/} }
TY - JOUR AU - A. V. Shabunin TI - Searching the structure of couplings in a chaotic maps ensemble by means of neural networks JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2024 SP - 636 EP - 653 VL - 32 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2024_32_5_a5/ LA - ru ID - IVP_2024_32_5_a5 ER -
A. V. Shabunin. Searching the structure of couplings in a chaotic maps ensemble by means of neural networks. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 5, pp. 636-653. http://geodesic.mathdoc.fr/item/IVP_2024_32_5_a5/
[1] Cremers J., Hübler A., “Construction of differential equations from experimental data”, Zeitschrift für Naturforschung A, 42:8 (1987), 797–802 | DOI | MR
[2] Crutchfield J.\;P., McNamara B.\;S., “Equations of motion from a data series”, Complex Systems, 1:3 (1987), 417–452 | MR | Zbl
[3] Pavlov A.\;N., Yanson N.\;B., “Primenenie metodiki rekonstruktsii matematicheskoi modeli k kardiogramme”, Izvestiya vuzov. Prikladnaya nelineinaya dinamika, 5:1 (1997), 93–108
[4] Anishchenko V.\;S., Pavlov A.\;N., “Global reconstruction in application to multichannel communication”, Physical Review E, 57:2 (1998), 2455–2457 | DOI
[5] Mukhin D.\;N., Feigin A.\;M., Loskutov E.\;M., Molkov Y.\;I., “Modified Bayesian approach for the reconstruction of dynamical systems from time series”, Physical Review E, 73:3 (2006), 036211 | DOI
[6] Takens F., “Detecting strange attractors in turbulence”, Dynamical Systems and Turbulence (Lecture Notes in Mathematics), 898 (1980), 366–381 | DOI | MR
[7] Granger C.\;W.\;J., “Investigating causal relations by econometric models and cross-spectral methods”, Econometrica, 37:3 (1969), 424–438 | DOI | Zbl
[8] Granger C.\;W.\;J., “Testing for causality. A personal viewpoint”, Journal of Economic Dynamics and Control, 2 (1980), 329–352 | DOI | MR
[9] Sysoev I.\;V., Diagnostika svyazannosti po khaoticheskim signalam nelineinykh sistem: reshenie obratnykh zadach, KUBiK, Saratov, 2019, 46 pp.
[10] Hesse R., Molle E., Arnold M., Schack B., “The use of time-variant EEG Granger causality for inspecting directed interdependencies of neural assemblies”, Journal of Neuroscience Methods, 124:1 (2003), 27–44 | DOI
[11] Mokhov I.\;I., Smirnov D.\;A., “Diagnostika prichinno-sledstvennoi svyazi solnechnoi aktivnosti i globalnoi pripoverkhnostnoi temperatury Zemli”, Izvestiya RAN. Fizika atmosfery i okeana, 44:3 (2008), 283–293 | DOI | MR
[12] Mokhov I.\;I., Smirnov D.\;A., “Empiricheskie otsenki vozdeistviya estestvennykh i antropogennykh faktorov na globalnuyu pripoverkhnostnuyu temperaturu”, Doklady Akademii nauk, 426:5 (2009), 679–684 | DOI
[13] Sysoev I.\;V., Karavaev A.\;S., Nakonechnyi P.\;I., “Rol nelineinosti modeli v diagnostike svyazei pri patologicheskom tremore metodom greindzherovskoiprichinnosti”, Izvestiya vuzov. Prikladnaya nelineinaya dinamika, 18:4 (2010), 81–90 | DOI
[14] Sysoev I.\;V., Sysoeva M.\;V., “Detecting changes in coupling with Granger causality method from time series with fast transient processes”, Physica D: Nonlinear Phenomena, 309 (2015), 9–19 | DOI | Zbl
[15] Chen Y., Rangarajan G., Feng J., Ding M., “AnalyzingMultiple Nonlinear Time Series with Extended Granger Causality”, Physics Letters A, 324:1 (2004), 26–35 | DOI | MR | Zbl
[16] Marinazzo D., Pellicoro M., Stramaglia S., “Nonlinear parametric model for Granger causality of time series”, Physical Review E, 73:6 (2006), 066216 | DOI
[17] Khaikin S., Neironnye seti, Vilyams, M., 2006, 1104 pp.
[18] Galushkin A.\;I., Neironnye seti. Osnovy teorii, Telekom, 2012, 496 pp.
[19] de Oliveira K.\;A., Vannucci A., Da Silva E.\;C., “Using artificial neural networks to forecast chaotic time series”, Physica A, 284:1–4 (2000), 393–404 | DOI
[20] Antipov O.\;I., Neganov V.\;A., “Prognozirovaniei fraktalnyi analiz khaoticheskikh protsessov diskretno-nelineinykh sistems pomoschyu neironnykh setei”, Doklady Akademii nauk, 436:1 (2011) | DOI | Zbl
[21] Tank A., Covert I., Foti N., Shojaie A., Fox E., Neural granger causality for nonlinear time series, 2018, arXiv: 1802.05842
[22] Tikhonov A.\;N., “O nekorrektnykh zadachakh lineinoialgebry i ustoichivom metode ikh resheniya”, Doklady Akademii nauk SSSR, 163:3 (1965), 591–594 | Zbl
[23] Fujisaka H., Yamada T., “Stability theory ofsynchronized motion in coupled-oscillator systems”, Progress of TheoreticalPhysics, 69:1 (1983), 32–47 | DOI | MR | Zbl
[24] Fujisaka H., Yamada T., “Stability theory ofsynchronized motion in coupled-oscillator systems. The mapping approach”, Progress of Theoretical Physics, 70:5 (1983), 1240–1248 | DOI | MR | Zbl
[25] Shabunin A., “Selective properties of diffusivecouplings and their influence on spatiotemporal chaos”, Chaos, 31:7 (2021), 073132 | DOI | MR | Zbl