Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2024_32_5_a3, author = {Yu. A. Malichev and V. G. Jahno}, title = {Biomorphic navigation system version}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {606--624}, publisher = {mathdoc}, volume = {32}, number = {5}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2024_32_5_a3/} }
Yu. A. Malichev; V. G. Jahno. Biomorphic navigation system version. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 5, pp. 606-624. http://geodesic.mathdoc.fr/item/IVP_2024_32_5_a3/
[1] Tolman E. C., “Cognitive maps in rats and men”, Psychological Review, 55:4 (1948), 189–208 | DOI
[2] McNaughton B. L., Battaglia F. P., Jensen O., Moser E. I., Moser M.-B., “Path integration and the neural basis of the “cognitive map””, Nature Reviews Neuroscience, 7 (2006), 663–678 | DOI
[3] Mittelstaedt H., Mittelstaedt M.-L., “Homing by path integration”, Avian Navigation, Proceedings in Life Sciences, eds. Papi F., Wallraff H. G., Springer, Berlin, Heidelberg, 1982, 290–297 | DOI
[4] Etienne A. S., Maurer R., Boulens V., Levy A., Rowe T., “Resetting the path integrator: a basic condition for route-based navigation”, Journal of Experimental Biology, 207 (2004), 1491–508 | DOI
[5] O’Keefe J., Dostrovsky J., “The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat”, Brain Research, 34 (1971), 171–175 | DOI
[6] Muller R. U, Ranck J. B. Jr, Taube J. S., “Head direction cells: properties and functional significance”, Current Opinion in Neurobiology, 6 (1996), 196–206 | DOI
[7] Taube J. S., “The head direction signal: Origins and sensory-motor integration”, Annual Review of Neuroscience, 30 (2007), 181–207 | DOI | MR
[8] Amit D. J., Modeling Brain Function: The World of Attractor Neural Networks, Cambridge University Press, New York, NY, 1989 | DOI | MR | Zbl
[9] Moser E. I., Roudi Y., Witter M. P., Kentros C., Bonhoeffer T., Moser M.-B., “Grid cells and cortical representation”, Nature Reviews Neuroscience, 15 (2014), 466–481 | DOI
[10] Hafting T., Fyhn M., Molden S., Moser M.-B., Moser E. I., “Microstructure of a spatial map in the entorhinal cortex”, Nature, 436 (2005), 801–806 | DOI
[11] Milford M. J., Robot Navigation from Nature: Simultaneous Localisation, Mapping, and Path Planning Based on Hippocampal Models, Springer, Vol 41 Springer Tracts in Advanced Robotics Berlin, Heidelberg, 2008, 196 pp. | DOI | MR | Zbl
[12] Eichenbaum H., “The role of the hippocampus in navigation is memory”, Journal of Neurophysiology, 117:4 (2017), 1785–1796 | DOI
[13] Gu Y., Lewallen S., Kinkhabwala A. A., Domnisoru C., Yoon K., Gauthier J. L., Fiete I. R., Tank D. W., “A map-like micro-organization of grid cells in the medial entorhinal cortex”, Cell, 175 (2018), 736–750 | DOI
[14] Poulter S., Hartley T., Lever C., “The neurobiology of mammalian navigation”, Current Biology, 28 (2018), R1023-R1042 | DOI
[15] Park E., Dvorak D., Fenton A. A., “Ensemble place codes in hippocampus: CA1, CA3, and dentate gyrus place cells have multiple place fields in large environments”, PLoS One, 6 (2011), e22349 | DOI
[16] Goode T. D., Tanaka K. Z., Sahay A., McHugh T. J., “An integrated index: Engrams, place cells, and hippocampal memory”, Neuron, 107 (2020), 805–820 | DOI
[17] Epstein R. A., Patai E. Z., Julian J. B., Spiers H. J., “The cognitive map in humans: spatial navigation and beyond”, Nature Neuroscience, 20 (2017), 1504–1513 | DOI
[18] Sarel A., Finkelstein A., Las L., Ulanovsky N., “Vectorial representation of spatial goals in the hippocampus of bats”, Science, 355 (2017), 176–180 | DOI
[19] Savelli F., Knierim J. J., “Origin and role of path integration in the cognitive representations of the hippocampus: computational insights into open questions”, Journal of Experimental Biology, 222 (2019), jeb188912 | DOI
[20] Rolls E. T., Stringer S. M., Elliot T., “Entorhinal cortex grid cells can map to hippocampal place cells by competitive learning”, Network, 17 (2006), 447–65 | DOI | MR
[21] Si B., Treves A., “The role of competitive learning in the generation of DG fields from EC inputs”, Cognitive Neurodynamics, 3 (2009), 177–187 | DOI
[22] Savelli F., Knierim J. J., “Hebbian analysis of the transformation of medial entorhinal grid-cell inputs to hippocampal place fields”, Journal of Neurophysiology, 103 (2010), 3167–83 | DOI
[23] Danjo T., Toyoizumi T., Fujisawa S., “Spatial representations of self and other in the hippocampus”, Science, 359 (2018), 213–218 | DOI
[24] Lian Y., Burkitt A. N., “Learning spatiotemporal properties of hippocampal place cells”, eNeuro, 9 (2022) | DOI
[25] Tsukerman V. D., Cheshkov G. N., “Osnovy nelineinoi dinamiki sensornogo vospriyatiya. I. Fazovoe kodirovanie v ostsillyatornykh setyakh”, Neirokompyutery: razrabotka, primenenie, 2002, no. 7–8, 65–72
[26] Tsukerman V. D., “Matematicheskaya model fazovogo kodirovaniya sobytii v mozge”, Matematicheskaya biologiya i bioinformatika, 1:1 (2006), 97–107 | DOI | MR
[27] Tsukerman V. D., Eremenko Z. S., Karimova O. V., Kulakov S. V., Sazykin A. A., “Kognitivnaya neirodinamika dvukh strategii navigatsionnogo povedeniya organizmov”, Izvestiya vuzov. PND, 19:6 (2011), 96–108 | DOI | Zbl
[28] Tsukerman V. D., Kharybina Z. S., Kulakov S. V., “Matematicheskaya model prostranstvennogo kodirovaniya v gippokampalnoi formatsii. II. Neirodinamicheskie korrelyaty mentalnykh traektorii i problema prinyatiya reshenii”, Matematicheskaya biologiya i bioinformatika, 9:1 (2014), 216–256 | DOI
[29] Tsukerman V. D., “K tvorcheskomu poznaniyu kreativnye nachala relyatsionnykh neironnykh setei s chetnym tsiklicheskim tormozheniem”, Trudy VII Vserossiiskoi konferentsii. Nelineinaya dinamika v kognitivnykh issledovaniyakh 2021 (Nizhnii Novgorod, 20–24 sentyabrya 2021), IPFRAN, Nizhnii Novgorod, 2021, 186–189
[30] Mur-Artal R., Montiel J. M. M., Tardós J. D., “ORB-SLAM: A Versatile and Accurate Monocular SLAM System”, IEEE Transactions on Robotics, 31:5 (2015), 1147–1163 | DOI
[31] Quigley M., Conley K., Gerkey B., Faust J., Foote T., Leibs J., Wheeler R., Ng A. Y., “ROS: an open-source Robot Operating System”, ICRA Workshop on Open Source Software, 3 (2009), 5
[32] Ball D., Heath S., Wiles J., Wyeth G., Corke P., Milford M., “OpenRatSLAM: an open source brain-based SLAM system”, Autonomous Robots, 34 (2013), 149–176 | DOI
[33] Samsonovich A., McNaughton B. L., “Path integration and cognitive mapping in a continuous attractor neural network model”, The Journal of Neuroscience, 17 (1997), 5900–5920 | DOI
[34] Rublee E., Rabaud V., Konolige K., Bradski G. R., “ORB: An efficient alternative to SIFT or SURF”, IEEE International Conference on Computer Vision, ICCV 2011 (Barcelona, Spain, November 6–13, 2011), 2564–2571
[35] Triggs B., McLauchlan P. F., Hartley R. I., Fitzgibbon A. W., “Bundle Adjustment — A Modern Synthesis”, Vision Algorithms: Theory and Practice. IWVA 1999, Lecture Notes in Computer Science, 1883, eds. Triggs, B., Zisserman, A., Szeliski, R., Springer, Berlin, Heidelberg, 2000, 298–372 | DOI
[36] Galvez-López D., Tardos J. D., “Bags of Binary Words for Fast Place Recognition in Image Sequences”, IEEE Transactions on Robotics, 28 (2012), 1188–1197 | DOI
[37] Horn B. K. P., “Closed-form solution of absolute orientation using unit quaternions”, Journal of the Optical Society of America A, 4 (1987), 629–641 | DOI
[38] Geiger A., Lenz P., Stiller C., and Urtasun R., “Vision meets robotics: the KITTI dataset”, The International Journal of Robotics Research, 32 (2013), 1231–1237 | DOI
[39] Yu F., Wu Y., Ma S., Xu M., Li H., Qu H., Song C., Wang T., Zhao R., Shi L., “Brain-inspired multimodal hybrid neural network for robot place recognition”, Science RoboticS, 8 (2023) | DOI
[40] Zhang H., Rich P. D., Lee A. K., Sharpee T. O., “Hippocampal spatial representations exhibit a hyperbolic geometry that expands with experience”, Nature Neuroscience, 26 (2023), 131–139 | DOI