Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2024_32_5_a2, author = {M. V. Kiselev and D. A. Larionov and A. M. Urusov}, title = {A spiking binary neuron --- detector of causal links}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {589--605}, publisher = {mathdoc}, volume = {32}, number = {5}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2024_32_5_a2/} }
TY - JOUR AU - M. V. Kiselev AU - D. A. Larionov AU - A. M. Urusov TI - A spiking binary neuron --- detector of causal links JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2024 SP - 589 EP - 605 VL - 32 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2024_32_5_a2/ LA - ru ID - IVP_2024_32_5_a2 ER -
M. V. Kiselev; D. A. Larionov; A. M. Urusov. A spiking binary neuron --- detector of causal links. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 5, pp. 589-605. http://geodesic.mathdoc.fr/item/IVP_2024_32_5_a2/
[1] Moreno-Bote R., Drugowitsch J., “Causal Inference and Explaining Away in a Spiking Network”, Scientific Reports, 5 (2015), 17531 | DOI
[2] Lansdell B. J., Kording K. P., “Neural spiking for causal inference and learning”, PLoS Computational Biology, 19:4 (2023), e1011005 | DOI
[3] Skatchkovsky N., Jang O., Simeone O., “Bayesian continual learning via spiking neural networks”, Frontiers in Computational Neuroscience, 16 (2022), 1037976 | DOI
[4] Friston K., “The history of the future of the bayesian brain”, Neuroimage, 62:2 (2012), 1230–1233 | DOI
[5] Kasabov N., Scott N. M., Tu E., Marks S., Sengupta N., Capecci E., Othman M., Doborjeh M. G., Murli N., Hartono R., Espinosa-Ramos J. I., Zhou L., Alvi F. B., Wang G., Taylor D., Feigin V., Gulyaev S., Mahmoud M., Hou Z.-G., Yang J., “Evolving spatio-temporal data machines based on the NeuCube neuromorphic framework: Design methodology and selected applications”, Neural Networks, 78 (2016), 1–14 | DOI | Zbl
[6] Kasabov N. K., “NeuCube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data”, Neural Networks, 52 (2014), 62–76 | DOI
[7] Schliebs S., Fiasché M., Kasabov N., “Constructing robust liquid state machines to process highly variable data streams”, International Conference on Artificial Neural Networks ICANN 2012: Artificial Neural Networks and Machine Learning — ICANN, 2012, 604–611 | DOI
[8] Doborjeh M., Doborjeh Z., Merkin A., Krishnamurthi R., Enayatollahi R., Feigin V., Kasabov N., “Personalized Spiking Neural Network Models of Clinical and Environmental Factors to Predict Stroke”, Cognitive Computation, 14 (2022), 2187–2202 | DOI
[9] Fernando C., “From blickets to synapses: Inferring temporal causal networks by observation”, Cognitive Science, 37:8 (2013), 1426–1470 | DOI
[10] Markram H., Gerstner W., Sjöström P. J., “A history of spike-timing-dependent plasticity”, Frontiers in Synaptic Neuroscience, 3 (2011), 4 | DOI
[11] Kerr R. R., Grayden D. B., Thomas D. A., Gilson M., Burkitt A. N., “Coexistence of Reward and Unsupervised Learning During the Operant Conditioning of Neural Firing Rates”, PLoS ONE, 9:1 (2014), e87123 | DOI
[12] Yuan M., Wu X., Yan R., Tang H., “Reinforcement Learning in Spiking Neural Networks with Stochastic and Deterministic Synapses”, Neural Computation, 31:12 (2019), 2368–2389 | DOI | MR | Zbl
[13] Mozafari M., Ganjtabesh M., Nowzari-Dalini A., Thorpe S. J., Masquelier T., “Bio-Inspired Digit Recognition Using Reward-Modulated Spike-Timing-Dependent Plasticity in Deep Convolutional Networks”, Pattern Recognition, 94 (2019), 87–95 | DOI
[14] Frémaux N., Sprekeler H., Gerstner W., “Functional Requirements for Reward-Modulated Spike-Timing-Dependent Plasticity”, The Journal of Neuroscience, 30:40 (2010), 13326–13337 | DOI
[15] Juarez-Lora A., Ponce-Ponce V. H., Sossa H., Rubio-Espino E., “R-STDP Spiking Neural Network Architecture for Motion Control on a Changing Friction Joint Robotic Arm”, Frontiers in Neurorobotics, 16 (2022), 904017 | DOI
[16] Ivanov D., Chezhegov A., Kiselev M., Grunin A., Larionov D., “Neuromorphic artificial intelligence systems”, Frontiers in Neuroscience, 16 (2022), 959626 | DOI
[17] Kiselev M., Ivanov A., Ivanov D., “Approximating Conductance-Based Synapses by Current-Based Synapses”, Advances in Neural Computation, Machine Learning, and Cognitive Research IV. Neuroinformatics 2020. Studies in Computational Intelligence, 925 (2020), 394–402 | DOI
[18] Kiselev M. V., Proceedings of International Joint Conference on Neural Networks, 2017, 3806–3813 | DOI
[19] Ho V. M., Lee J. A., Martin K. C., “The cell biology of synaptic plasticity”, Science, 334:6056 (2011), 623–628 | DOI | MR
[20] Citri A., Malenka R. C., “Synaptic Plasticity: Multiple Forms, Functions, and Mechanisms”, Neuropsychopharmacology Reviews, 33 (2008), 18–41 | DOI
[21] Roberts P. D., Leen T. K., “Anti-hebbian spike-timing-dependent plasticity and adaptive sensory processing”, Frontiers in Computational Neuroscience, 4 (2010), 156 | DOI
[22] Jiajun F., “A Review for Deep Reinforcement Learning in Atari: Benchmarks, Challenges, and Solutions”, 2022, arXiv: abs/2112.04145