Definition of information in computer science
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 4, pp. 541-562.

Voir la notice de l'article provenant de la source Math-Net.Ru

Purpose of this study is to formulate a working definition of information to meet the needs of computer science. There is currently no strict definition of this term. There is a methodological contradiction: the development and application of information technologies requires accuracy and rigor, but at the same time the development is based on a vague, intuitive concept. Materials and methods. The materials for the study are existing classical approaches to understanding information, and the main method is the analysis of these approaches. The proposed definition is constructed taking into account two mathematical transformations: the selection of a certain subset and the mapping between sets. To formalize the allocation procedure, it is used apparatus of fuzzy sets. Results. A definition of information is proposed as the result of a mapping in which the selection of a subset from a set of prototypes leads to the selection of a corresponding subset from a set of images. The selected subset can be understood as fuzzy, then an equivalent definition of information is acceptable as a result of mapping, in which an increase in the heterogeneity of the distribution of the presence indicator on the set of prototypes leads to an increase in the heterogeneity of the distribution of the corresponding indicator on the set of images. The essence of the new definition is demonstrated using models of population dynamics in discrete time. The significance of the proposed approach for information technology is revealed using the example of the numerical method of multi-extremal optimization. It is shown that the proposed definition makes it possible to formulate effective stopping conditions for the numerical method of stochastic optimization, which guarantees the receipt of a given amount of information. Conclusion. The proposed understanding of information allows us to overcome the shortcomings of previous approaches to understanding the essence of information, retains all the advantages of the classical approach and is consistent with other well-known approaches in the field of computer science. This definition can be used to improve numerical optimization methods, as well as other information technology tools.
Keywords: information, entropy, fuzzy set, membership indicator, distribution, mapping
@article{IVP_2024_32_4_a8,
     author = {O. A. Kuzenkov},
     title = {Definition of information in computer science},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {541--562},
     publisher = {mathdoc},
     volume = {32},
     number = {4},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2024_32_4_a8/}
}
TY  - JOUR
AU  - O. A. Kuzenkov
TI  - Definition of information in computer science
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2024
SP  - 541
EP  - 562
VL  - 32
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2024_32_4_a8/
LA  - ru
ID  - IVP_2024_32_4_a8
ER  - 
%0 Journal Article
%A O. A. Kuzenkov
%T Definition of information in computer science
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2024
%P 541-562
%V 32
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2024_32_4_a8/
%G ru
%F IVP_2024_32_4_a8
O. A. Kuzenkov. Definition of information in computer science. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 4, pp. 541-562. http://geodesic.mathdoc.fr/item/IVP_2024_32_4_a8/

[1] Kosta A., Pappas N., Angelakis V., “Age of Information: A New Concept, Metric, and Tool”, Foundations and Trends in Networking, \: 3 (2017), 162–259 | DOI | Zbl

[2] Maatouk A., Kriouile S., Assaad M., Ephremides A., “The Age of Incorrect Information: A New Performance Metric for Status Updates”, IEEE/ACM Transactions on Networking, 28:5 (2020), 2215–2228 | DOI

[3] Leinster T., Entropy and diversity: the axiomatic approach, Cambridge University Press, New York, 2021, 442 pp. | DOI | MR | Zbl

[4] Mazur M., Kachestvennaya teoriya informatsii, Mir, M., 1974, 238 pp.

[5] Kolmogorov A. N., “Kombinatornye osnovaniya teorii informatsii i ischisleniya veroyatnostei”, Uspekhi matematicheskikh nauk, 38:4 (1983), 27–36 | DOI | MR | Zbl

[6] Chernavskii D. S., Sinergetika i informatsiya: Dinamicheskaya teoriya informatsii, Nauka, M., 2001, 304 pp.

[7] Bates M. J., “Concepts for the Study of Information Embodiment”, Library Trends, 66:3 (2018), 239–266 | DOI | MR

[8] Adriaans P., “A Critical Analysis of Floridi’s Theory of Semantic Information”, Knowledge, Technology Policy, 23 (2010), 41–56 | DOI

[9] Floridi L., “What is the philosophy of information?”, Metaphilosophy, 33:1–2 (2002), 123–145 | DOI

[10] Gan L., “Filosofiya informatsii i osnovy buduschei kitaiskoi filosofii nauki i tekhniki”, Voprosy filosofii, 2007, no. 5, 45–57

[11] Adriaans P., van Benthem J., Philosophy of information (Handbook of the philosophy of science), North Holland, 2008, 1000 pp.

[12] Kolin K. K., “Filosofiya informatsii: struktura realnosti i fenomen informatsii”, Metafizika, 4:2 (2013) | Zbl

[13] Sequoiah-Grayson S., “The metaphilosophy of information”, Minds and Machines, 17 (2007), 331–344 | DOI

[14] Mingers J., Standing C., “What is information? Toward a theory of information as objective and veridical”, Journal of Information Technology, 33:2 (2018), 85–104 | DOI | MR

[15] Díaz Nafría J., “What is information? A Multidimensional Concern”, TripleC, 8:1 (2010), 77–108 | DOI

[16] Crnkovic G., Hofkirchner W., “Floridi’s “Open Problems in Philosophy of Information”, Ten Years Later”, Information, 2:2 (2011), 327–359 | DOI

[17] Robinson L., Bawden D., “Mind the Gap: Transitions between concepts of information in varied domains”, Theories of Information, Communication and Knowledge, 34 (2014), 121–141 | DOI

[18] Lektorskii V. A., Pruzhinin B. I., Bodyakin V. I., Dubrovskii D. I., Kolin K. K., Melik-Gaikazyan I. V., Ursul A. D., “Informatsionnyi podkhod v mezhdistsiplinarnoi perspektive (materialy «kruglogo stola»)”, Voprosy filosofii, 2010, no. 2, 84–122

[19] Zins C., “Conceptual Approaches to Defining Data, Information and Knowledge”, Journal of the American Society for Information Science and Technology, 58:4 (2007), 479–493 | DOI

[20] Liew A., “Understanding Data, Information, Knowledge And Their Inter-Relationships”, Journal of Knowledge Management Practice, 8:2 (2007)

[21] Capurro R., Hjorland B., “The Concept of Information”, Annual Review of Information Science and Technology, 37:1 (2003), 343–411 | DOI

[22] Beynon-Davies P., Significance: Exploring the nature of information, systems and technology, Palgrave Macmillan, London, 2010, 355 pp.

[23] Callaos N., Callaos B., “Toward a Systemic Notion of Information: Practical Consequences”, Informing Science, 5:1 (2002), 1–11 | DOI | MR

[24] Vigo R., “Representational information: a new general notion and measure of information”, Information Sciences, 181:21 (2011), 4847–4859 | DOI | MR | Zbl

[25] Deutsch D., Maretto C., “Constructor theory of information”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471:2174 (2015), 20140540 | DOI | MR | Zbl

[26] Dittrich T., ““The concept of information in physics”: an interdisciplinary topical lecture”, European Journal of Physics, 36:1 (2015), 015010 | DOI | Zbl

[27] Clifton R., Bub J., Halvorson H., “Characterizing quantum theory in terms of information-theoretic constraints”, Foundations of Physics, 33 (2003), 1561–1591 | DOI | MR | Zbl

[28] Morrison M. L., Rosenberg N. A., “Mathematical bounds on Shannon entropy given the abundance of the ith most abundant taxon”, Journal of Mathematical Biology, 87 (2023), 76 | DOI | MR | Zbl

[29] Cushman S. A., “Entropy in landscape ecology: a quantitative textual multivariate review”, Entropy, 23:11 (2021), 1425 | DOI

[30] Belyaev M. A., Malinina L. A., Lysenko V. V., Osnovy informatiki: Uchebnik dlya vuzov, Feniks, M., 2006, 352 pp.

[31] Simonovich S. V., Informatika, Piter, Uchebnik dlya vuzov 3-e izd Standart tretego pokoleniya SPb, 2011, 640 pp.

[32] Makarova N. V., Volkov V. B., Informatika: Uchebnik dlya vuzov, Piter, SPb., 2011, 576 pp.

[33] Nielsen M., Chuang I., Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, 2000, 702 pp. | DOI | MR

[34] Zade L. A., “Nechetkie mnozhestva”, Nechetkie sistemy i myagkie vychisleniya, 10:1 (2015), 7–22

[35] Zade L. A., “Osnovy novogo podkhoda k analizu slozhnykh sistem i protsessov prinyatiya reshenii”, Matematika segodnya, «Znanie», M., 1974, 5–49

[36] Kuzenkov O., Morozov A., “Towards the Construction of a Mathematically Rigorous Framework for the Modelling of Evolutionary Fitness”, Bulletin of Mathematical Biology, 81:11 (2019), 4675–4700 | DOI | MR

[37] Perfileva E. G., “Prilozheniya teorii nechetkikh mnozhestv”, Itogi nauki i tekhniki, Teoriya veroyatnostei. Matematicheskaya statistika. Teoreticheskaya kibernetika, 28, 1990, 83–151 | MR

[38] Kuzenkov O., Ryabova E., “Variational Principle for Self-replicating Systems”, Mathematical Modelling of Natural Phenomena, \: 2 (2015), 115–128 | DOI | MR

[39] Kuzenkov O. A., Novozhenin A. V., “Optimal control of measure dynamic”, Communications in Nonlinear Science and Numerical Simulation, 21:1-3 (2015), 159–171 | DOI | MR

[40] Sandhu S., Morozov A., Kuzenkov O., “Revealing Evolutionarily Optimal Strategies in Self-Reproducing Systems via a New Computational Approach”, Bulletin of Mathematical Biolog, 81:11 (2019), 4701–4725 | DOI | MR

[41] Muller I., A History of Thermodynamics: The Doctrine of Energy and Entropy, Springer, Berlin, 2007, 330 pp. | DOI | MR

[42] Shu J. J., “A new integrated symmetrical table for genetic codes”, Biosystems, 151 (2017), 21–26 | DOI

[43] Morozov A. Y., Kuzenkov O. A., Sandhu S. K., “Global optimisation in hilbert spaces using the survival of the fittest algorithm”, Communications in Nonlinear Science and Numerical Simulation, 103 (2021), 106007 | DOI | MR

[44] Yao X., Liu Y., Lin G., “Evolutionary programming made faster”, IEEE Transactions on Evolutionary Computation, 3:2 (1999), 82–102 | DOI

[45] Kuzenkov O., Morozov A., Kuzenkova G., “Recognition of patterns of optimal diel vertical migration of zooplankton using neural networks”, IJCNN 2019 — International Joint Conference on Neural Networks (Budapest, Hungary), 2019, 1–6 | DOI

[46] Kuzenkov O., Kuzenkova G., “Identification of the fitness function using neural networks”, Procedia Computer Science, 169 (2020), 692–697 | DOI

[47] Casagrande D., “Information as verb: Re-conceptualizing information for cognitive and ecological models”, Journal of Ecological Anthropology, 3:1 (1999), 4–13 | DOI

[48] Dusenbery D. B., Sensory Ecology, Freeman, New York, 1992, 558 pp.

[49] Zade L. A., Ponyatie lingvisticheskoi peremennoi i ego primenenie k prinyatiyu priblizhennykh reshenii, Mir, M., 1976, 167 pp. | MR

[50] Kuzenkov O. A., Kuzenkova G. V., Kiseleva T. P., “Kompyuternaya podderzhka uchebno-issledovatelskikh proektov v oblasti matematicheskogo modelirovaniya protsessov otbora”, Obrazovatelnye tekhnologii i obschestvo, 22:1 (2019), 152–163

[51] Kuzenkov O. A., “Izuchenie kontseptsii informatsii studentami IT-napravlenii”, Sovremennyeinformatsionnye tekhnologii i IT-obrazovanie, 19:1 (2023), 13–23 | DOI