Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2024_32_4_a6, author = {A. N. Pavlov}, title = {Studying electrical activity of the brain within the concept of coordination of rhythmic processes}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {511--520}, publisher = {mathdoc}, volume = {32}, number = {4}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2024_32_4_a6/} }
TY - JOUR AU - A. N. Pavlov TI - Studying electrical activity of the brain within the concept of coordination of rhythmic processes JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2024 SP - 511 EP - 520 VL - 32 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2024_32_4_a6/ LA - ru ID - IVP_2024_32_4_a6 ER -
%0 Journal Article %A A. N. Pavlov %T Studying electrical activity of the brain within the concept of coordination of rhythmic processes %J Izvestiya VUZ. Applied Nonlinear Dynamics %D 2024 %P 511-520 %V 32 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVP_2024_32_4_a6/ %G ru %F IVP_2024_32_4_a6
A. N. Pavlov. Studying electrical activity of the brain within the concept of coordination of rhythmic processes. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 4, pp. 511-520. http://geodesic.mathdoc.fr/item/IVP_2024_32_4_a6/
[1] Ivanov P. C., Amaral L. A. N., Goldberger A. L., Stanley H. E., “Stochastic feedback and the regulation of biological rhythms”, Europhysics Letters, 43:4 (1998), 363–368 | DOI
[2] Hausdorff J. M., Ashkenazy Y., Peng C.-K., Ivanov P. C., Stanley H. E., Goldberger A. L., “When human walking becomes random walking: fractal analysis and modeling of gait rhythm fluctuations”, Physica A, 302:1–4 (2001), 138–147 | DOI | Zbl
[3] Stankovski T., Ticcinelli V., McClintock P. V. E., Stefanovska A., “Coupling functions in networks of oscillators”, New Journal of Physics, 17 (2015), 035002 | DOI | MR | Zbl
[4] Shashikumar S. P., Li Q., Clifford G. D., Nemati S., “Multiscale network representation of physiological time series for early prediction of sepsis”, Physiological Measurement, 38:12 (2017), 2235–2248 | DOI
[5] Bashan A., Bartsch R. P., Kantelhardt J. W., Havlin S., Ivanov P. C., “Network physiology reveals relations between network topology and physiological function”, Nature Communications, 3 (2012), 702 | DOI
[6] Bartsch R. P., Liu K. K. L., Bashan A., Ivanov P. C., “Network physiology: how organ systems dynamically interact”, PLoS One, 10:11 (2015), e0142143 | DOI
[7] Ivanov P. C., Amaral L. A. N., Goldberger A. L., Havlin S., Rosenblum M. G., Stanley H. E., “From 1/f-noise to multifractal cascades in heartbeat dynamics”, Chaos, 11:3 (2001), 641–652 | DOI | Zbl
[8] Hu K., Chen Z., Hilton M. F., Stanley H. E., Shea S. A., “Non-random fluctuations and multi-scale dynamics regulation of human activity”, Physica A, 337:1–2 (2004), 307–318 | DOI
[9] Smirnov D. A., “Quantification of causal couplings via dynamical effects: A unifying perspective”, Physical Review E, 90:6 (2014), 062921 | DOI | MR
[10] Sysoev I. V., Ponomarenko V. .I, Prokhorov M. D., “Reconstruction of ensembles of nonlinear neurooscillators with sigmoid coupling function”, Nonlinear Dynamics, 95 (2019), 2103–2116 | DOI | Zbl
[11] Laufs H., Krakow K., Sterzer P., Eger E., Beyerle A., Salek-Haddadi A., Kleinschmidt A., “Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest”, Proceedings of the National Academy of Sciences (PNAS), 100:19 (2003), 11053–11058 | DOI
[12] Gould I. C., Nobre A. C., Wyart V., Rushworth M. F., “Effects of decision variables and intraparietal stimulation on sensorimotor oscillatory activity in the human brain”, Journal of Neuroscience, 32:40 (2012), 13805–13818 | DOI
[13] Wyart V., De Gardelle V., Scholl J., Summerfield C., “Rhythmic fluctuations in evidence accumulation during decision making in the human brain”, Neuron, 76:4 (2012), 847–858 | DOI
[14] Marshall L., Helgadóttir H., Mölle M., Born J., “Boosting slow oscillations during sleep potentiates memory”, Nature, 444 (2006), 610–613 | DOI
[15] Miller K. J., Leuthardt E. C., Schalk G., Rao R. P., Anderson N. R., Moran D. W., Miller J. W., Ojemann J. G., “Spectral changes in cortical surface potentials during motor movement”, Journal of Neuroscience, 27:9 (2007), 2424–2432 | DOI
[16] Rey H. G., De Falco E., Ison M. J., Valentin A., Alarcon G., Selway R., Richardson M. P., Quian Quiroga R., “Encoding of long-term associations through neural unitization in the human medial temporal lobe”, Nature Communications, 9 (2018), 4372 | DOI
[17] Jones S. R., Pinto D. J., Kaper T. J., Kopell N., “Alpha-frequency rhythms desynchronize over long cortical distances: a modeling study”, Journal of Computational Neuroscience, 9 (2000), 271–291 | DOI | Zbl
[18] Pahor A, Jaušovec N., “Theta-gamma cross-frequency coupling relates to the level of human intelligence”, Intelligence, 46 (2014), 283–290 | DOI
[19] Scheffer-Teixeira R., Tort A. B., “On cross-frequency phase-phase coupling between theta and gamma oscillations in the hippocampus”, eLife, 5 (2016), e20515 | DOI
[20] Vijayan S., Lepage K. Q., Kopell N. J., Cash S. S., “Frontal beta-theta network during rem sleep”, eLife, 6 (2017), e18894 | DOI
[21] Lin A., Liu K. L., Bartsch R. P., Ivanov P. Ch., “Dynamic network interactions among distinct brain rhythms as a hallmark of physiologic state and function”, Communications Biology, 3 (2020), 197 | DOI
[22] Chen B., Ciria L. F, Hu C., Ivanov P. Ch., “Ensemble of coupling forms and networks among brain rhythms as function of states and cognition”, Communications Biology, 5 (2022), 82 | DOI
[23] Pavlov A. N, Dubrovskii A. I, Pavlova O. N, Semyachkina-Glushkovskaya O. V., “Effects of sleep deprivation on the brain electrical activity in mice”, Applied Science, 11:3 (2021), 1182 | DOI
[24] Podobnik B, Stanley H. E., “Detrended cross-correlation analysis: a new method for analyzing two nonstationary time series”, Physical Review Letters, 100:8 (2008), 084102 | DOI
[25] Podobnik B, Grosse I, Horvatić D, Ilic S, Ivanov P. Ch, Stanley H. E., “Quantifying cross-correlations using local and global detrending approaches”, The European Physical Journal B, 71 (2009), 243–250 | DOI
[26] Peng C. K, Havlin S, Stanley H. E, Goldberger A. L., “Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series”, Chaos, 5:1 (1995), 82–87 | DOI | MR
[27] Bryce R. M, Sprague K. B., “Revisiting detrended fluctuation analysis”, Scientific Reports, 2 (2012), 315 | DOI
[28] Frolov N. S, Grubov V. V, Maksimenko V. A, Lüttjohann A., Makarov V. V., Pavlov A. N., Sitnikova E., Pisarchik A. N., Kurths J., Hramov A. E., “Statistical properties and predictability of extreme epileptic events”, Scientific Reports, 9 (2019), 7243 | DOI
[29] Achariyar T. M., Li B., Peng W., Verghese P. B., Shi Y., McConnell E., Benraiss A., Kasper T., Song W., Takano T., Holtzman D. M., Nedergaard M., Deane R., “Glymphatic distribution of CSF-derived apoE into brain is isoform specific and suppressed during sleep deprivation”, Molecular Neurodegeneration, 11 (2016), 74 | DOI
[30] Zhang J., Zhu Y., Zhan G., Fenik P., Panossian L., Wang M. M., Reid S., Lai D., Davis J. G., Baur J. A., Veasey S., “Extended wakefulness: compromised metabolics in and degeneration of locus ceruleus neurons”, Journal of Neuroscience, 34:12 (2014), 4418–4431 | DOI
[31] Kent B. A., Strittmatter S. M., Nygaard H. B., “Sleep and EEG Power spectral analysis in three transgenic mouse models of Alzheimer's disease: APP/PS1, 3xTgAD, and Tg2576”, Journal of Alzheimer's Disease Reports, 64:4 (2018), 1325–1336 | DOI
[32] Gneiting T., Schlather M., “Stochastic models that separate fractal dimension and the Hurst effect”, SIAM review, 46:2 (2004), 269–282 | DOI | MR | Zbl
[33] Pavlov A. N., Runnova A. E., Maksimenko V. A., Pavlova O. N., Grishina D. S., Hramov A. E., “Detrended fluctuation analysis of EEG patterns associated with real and imaginary arm movements”, Physica A, 509 (2018), 777–782 | DOI
[34] Pavlov A. N., Pitsik E. N., Frolov N. S., Badarin A., Pavlova O. N., Hramov A. E., “Age-related distinctions in EEG signals during execution of motor tasks characterized in terms of long-range correlations”, Sensors, 20:20 (2020), 5843 | DOI
[35] Frolov N. S., Maksimenko V. A., Khramova M. V., Pisarchik A. N., Hramov A. E., “Dynamics of functional connectivity in multilayer cortical brain network during sensory information processing”, The European Physical Journal Special Topics, 228 (2019), 2381–2389 | DOI
[36] Anand D. V., Chung M. K., “Hodge Laplacian of brain networks”, IEEE Transactions on Medical Imaging, 42:5 (2023), 1563–1573 | DOI
[37] Chung M. K., Das S., Ombao H., “Dynamic topological data analysis of functional human brain networks”, Foundations of Data Science, 6:1 (2024), 22–40 | DOI | MR
[38] Yadav Y., Elumalai P., Williams N., Jost J., Samal A., “Discrete Ricci curvatures capture age-related changes in human brain functional connectivity networks”, Frontiers in Aging Neuroscience, 15 (2023), 1120846 | DOI
[39] Pringle J., “On the parallel between learning and evolution”, Behaviour, 3 (1951), 174–215 | DOI
[40] Shao Y. H., Gu G. F., Jiang Z. Q., Zhou W. X., Sornette D., “Comparing the performance of FA, DFA and DMA using different synthetic long-range correlated time series”, Scientific Reports, 2 (2012), 835 | DOI