Mathematical model for controlling brain neuroplasticity during neurofeedback
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 4, pp. 472-491.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this work is to apply a model of interaction between thalamocortical system modules to control brain neuroplasticity. Methods. Psychophysiological experiments on neurofeedback are being carried out, which consist of light stimulation of the eyes with monofrequency light pulses in the range of 4... 20 Hz and recording the bioelectrical activity of the brain. As a characteristic of maturity, brain rhythms use the combination of the presence or absence in the bioelectrical activity of the brain of a dominant peak frequency in the alpha range of the EEG, the effect of assimilation of the rhythms imposed by stimulation, and the presence of a multiplying effect from the rhythms imposed by stimulation. Solutions to the model of an elementary thalamocortical cell, which is described by a system of differential equations, corresponding to a psychophysiological experiment are considered. The model is implemented using the Python. Results. The model parameters are selected in such a way as to achieve a qualitative correspondence of the spectral characteristics of the obtained solutions with the bioelectrical activity of the subject’s brain. Rhythmic maturity is assessed based on the parameters of the thalamocortical cell model. The brightness and frequency characteristics of light stimuli are selected based on the prediction of the model, the input of which is supplied with various variants of pulse sequences. Conclusion. A method has been developed for digital diagnostics of the level of brain rhythm maturity based on a comparison of modeling results and data from a psychophysiological experiment on neurofeedback. The evolution of model solutions depending on its parameters simulates the process of biocontrol of brain neuroplasticity, taking into account the initial level of rhythmic maturity and stress-induced distortions of neurodynamics. Experiments on the model with different parameters of the model and external signal can be used in the development of new neurofeedback protocols.
Keywords: thalamocortical cell model, neurofeedback, neuroplasticity, bioelectrical activity of the brain, assessment of brain rhythm maturity
@article{IVP_2024_32_4_a4,
     author = {I. V. Nuidel and A. V. Kolosov and S. A. Permyakov and I. S. Egorov and S. A. Polevaya and V. G. Jahno},
     title = {Mathematical model for controlling brain neuroplasticity during neurofeedback},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {472--491},
     publisher = {mathdoc},
     volume = {32},
     number = {4},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2024_32_4_a4/}
}
TY  - JOUR
AU  - I. V. Nuidel
AU  - A. V. Kolosov
AU  - S. A. Permyakov
AU  - I. S. Egorov
AU  - S. A. Polevaya
AU  - V. G. Jahno
TI  - Mathematical model for controlling brain neuroplasticity during neurofeedback
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2024
SP  - 472
EP  - 491
VL  - 32
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2024_32_4_a4/
LA  - ru
ID  - IVP_2024_32_4_a4
ER  - 
%0 Journal Article
%A I. V. Nuidel
%A A. V. Kolosov
%A S. A. Permyakov
%A I. S. Egorov
%A S. A. Polevaya
%A V. G. Jahno
%T Mathematical model for controlling brain neuroplasticity during neurofeedback
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2024
%P 472-491
%V 32
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2024_32_4_a4/
%G ru
%F IVP_2024_32_4_a4
I. V. Nuidel; A. V. Kolosov; S. A. Permyakov; I. S. Egorov; S. A. Polevaya; V. G. Jahno. Mathematical model for controlling brain neuroplasticity during neurofeedback. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 4, pp. 472-491. http://geodesic.mathdoc.fr/item/IVP_2024_32_4_a4/

[1] Savchuk L. V., Polevaya S. A., Parin S. B., Bondar A. T., Fedotchev A. I., “Rezonansnoe skanirovanie i analiz elektroentsefalogrammy pri opredelenii zrelosti korkovoi ritmiki u mladshikh shkolnikov”, Biofizika, 67:2 (2022), 354–361 | DOI

[2] Shaw C. A., McEachern J. C., Toward a Theory of Neuroplasticity, Psychology Press, New York, 2001, 468 pp. | DOI

[3] Kaczmarek B. L., “Current views on neuroplasticity: what is new and what is old?”, Acta Neuropsychologica, 18:1 (2020), 1–14 | DOI | MR

[4] Kaczmarek B. L., Markiewicz K., “Brain plasticity and the idea of the functional system”, Lurian Journal, 2:2 (2021), 46–62 | DOI

[5] Fedotchev A. I., Parin S. B., Gromov K. N., Savchuk S. A., Polevaya S. A., “Kompleksnaya obratnaya svyaz ot biopotentsialov mozga i serdtsa v korrektsii stress-indutsirovannykh sostoyanii”, Zhurnal vysshei nervnoi deyatelnosti im. Pavlova, 69:2 (2019), 187–193 | DOI

[6] Fedotchev A. I., “Effekty fotostimulyatsii, upravlyaemoi elektroentsefalogrammoi cheloveka”, Biofizika, 64:2 (2019), 358–361 | DOI

[7] Fedotchev A. I., Parin S. B., Polevaya S. A., Zemlianaia A. A., “Human body rhythms in the development of non-invasive methods of closed-loop adaptive neurostimulation”, J. Pers. Med, 11:5 (2021), 437 | DOI

[8] Fedotchev A. I., Zemlyanaya A. A., Savchuk L. V., Polevaya S. A., “Neirointerfeis s dvoinoi obratnoi svyazyu ot EEG v korrektsii stress-vyzvannykh rasstroistv”, Sovremennye tekhnologii v meditsine, 11:1 (2019), 150–154 | DOI

[9] Fedotchev A. I., Parin S. B., Polevaya S. A., “Neirointerfeisy, upravlyaemye biopotentsialami mozga i serdtsa, v korrektsii stress-vyzvannykh rasstroistv”, Vestnik RFFI. Obschestvennye i gumanitarnye nauki, 94:1 (2019), 144–152 | DOI

[10] Fedotchev A. I., Parin S. B., Polevaya S. A., Zemlyanaya A. A., “Effekty audio - vizualnoi stimulyatsii, avtomaticheski upravlyaemoi biopotentsialami mozga i serdtsa cheloveka”, Fiziologiya cheloveka, 45:5 (2019), 75–79 | DOI

[11] Coulter D. A., “Thalamocortical Anatomy and Physiology”, Epilepsy: A Comprehensive Textbook, eds. Engel Jr. J., Pedley T A., Lippincott-Raven, Philadelphia, 1997, 341–351

[12] Miranda R. A., Casebeer W. D., Hein A. M., Judy J. W., Krotkov E. P., Laabs T. L., Manzo J. E., Pankratz K. Z., Pratt G. A., Sanchez J. C., Weber D. J., Wheeler T. L., Ling G. S. F., “Darpa-funded efforts in the development of novel brain–computer interface technologies”, J. Neurosci. Methods, 244 (2015), 52–67 | DOI

[13] Fedotchev A. I., Parin S. B., Polevaya S. A., Velikova S. D., “Tekhnologii «interfeis mozg-kompyuter» i neirobioupravlenie: sovremennoe sostoyanie i vozmozhnosti klinicheskogo primeneniya”, Sovremennye tekhnologii v meditsine, 9:1 (2017), 175–184 | DOI

[14] Fedotchev A. I., O San Dzhun, Bondar A. T., Semenov V. S., Sovremennye vozmozhnosti i podkhody k aktivizatsii kognitivnoi deyatelnosti i protsessov obucheniya u cheloveka: Monografiya, IBK RAN, Puschino, 2017, 114 pp.

[15] Fedotchev A. I., Parin S. B., Polevaya S. A., “Adaptive neurostimulation methods in correcting posttraumatic stress disorder and professional burnout syndrome”, Opera Medica et Physiologica, 8:2 (2021), 68–74 | DOI

[16] Fedotchev A. I., Parin S. B., Polevaya S. A., Zemlianaia A. A., “EG-based musical neurointerfaces in the correction of stress-induced states”, Brain Comput Interfaces (Abingdon), 9:1 (2022), 1–6 | DOI

[17] Nuidel I. V., Kolosov A. V., Demareva V. A., Yakhno V. G., “Primenenie fenomenologicheskoi matematicheskoi modeli dlya vosproizvedeniya effekta vzaimodeistviya endogennykh i ekzogennykh ostsillyatsii pri neirobioupravlenii”, Sovremennye tekhnologii v meditsine, 11:1 (2019), 103–108 | DOI

[18] Fedotchev A. I., Parin S. B., Polevaya S. A., “Neirointerfeisy na osnove endogennykh ritmov organizma dlya optimizatsii funktsionalnogo sostoyaniya cheloveka i ego kognitivnoi reabilitatsii”, Uspekhi fiziologicheskikh nauk, 52:2 (2021), 83–92 | DOI

[19] Zhang Y., Guo D., Xu P., Zhang Y., Yao D., “Robust frequency recognition for SSVEP-based BCI with temporally local multivariate synchronization index”, Cogn. Neurodyn, 10:6 (2016), 505–511 | DOI

[20] Kudryashov A. V., Yakhno V. G., “Rasprostranenie oblastei povyshennoi impulsnoi aktivnosti v neironnoi seti”, Dinamika biologicheskikh sistem, 2 (1978), 45–59

[21] Yakhno Y. G., “Basic models of hierarchy neuron-like systems and ways to analyse some of their complex reactions”, Optical Memory and Neural Network, 4:2 (1995), 145–155

[22] Kolosov A. V., Nuidel I. V., Yakhno V. G., “Issledovanie dinamicheskikh rezhimov v matematicheskoi modeli elementarnoi talamokortikalnoi yacheiki”, Izvestiya vuzov. PND, 24:5 (2016), 72–83 | DOI