Detection of focused beams of surface magnetostatic waves in YIG / Pt structures
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 3, pp. 405-418.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this work is to experimentally study, using the inverse spin Hall effect (ISHE), the detection of focused beams of magnetostatic surface waves (MSSW) in integrated YIG (3.9 $\mu$m) / Pt (4 nm) thin-film microstructures, where the focusing effect was ensured by the curvilinear shape of the exciting antenna. Make a comparison with the case of detecting MSSWs excited by a rectilinear antenna. Methods. Experiments were carried out using the delay line structures based on the YIG/Pt. The amplitude-frequency characteristics of the YIG/Pt structure and the frequency dependence of the EMF (V(f)) induced in platinum were studied. Results. It was shown that at frequencies f near the long-wavelength limit of the MSSW spectrum, the magnitude of the EMF V(f) generated by a focused MSSW can be several times higher than the values of V(f) in the case of MSSW excitation by a common (straight) antenna. In this case, in the short-wavelength part of the spectrum, on the contrary, the magnitude of the EMF generated by the focused MSSW beam turns out to be noticeably smaller. This behavior is associated with chromatic aberration of the focusing antenna for the MSSW, which manifests itself in the frequency dependence of the focal length of the antenna, which is confirmed by the results of micromagnetic modeling. It is shown that the drop in the EMF signal generated by a focused MSSW beam in the short-wavelength part of the spectrum is associated with the focus reaching the area of the YIG not covered with the Pt film. In this case, the increase in V(f) in the long-wavelength region of the MSSW spectrum is explained by an increase in the linear power density of the MSSW and the formation of caustics under the Pt film. Conclusion. Obtained results can be used for the development of highly sensitive spin wave detectors and the creation of spin logic devices.
Keywords: YIG / Pt structures, focusing antennas, magnetostatic surface waves, inverse spin Hall effect, micromagnetic modeling
@article{IVP_2024_32_3_a8,
     author = {M. E. Seleznev and G. M. Dudko and Yu. V. Nikulin and Yu. V. Khivintsev and V. K. Sakharov and A. V. Kozhevnikov and S. L. Vysotsky and Yu. A. Filimonov},
     title = {Detection of focused beams of surface magnetostatic waves in {YIG} / {Pt} structures},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {405--418},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2024_32_3_a8/}
}
TY  - JOUR
AU  - M. E. Seleznev
AU  - G. M. Dudko
AU  - Yu. V. Nikulin
AU  - Yu. V. Khivintsev
AU  - V. K. Sakharov
AU  - A. V. Kozhevnikov
AU  - S. L. Vysotsky
AU  - Yu. A. Filimonov
TI  - Detection of focused beams of surface magnetostatic waves in YIG / Pt structures
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2024
SP  - 405
EP  - 418
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2024_32_3_a8/
LA  - ru
ID  - IVP_2024_32_3_a8
ER  - 
%0 Journal Article
%A M. E. Seleznev
%A G. M. Dudko
%A Yu. V. Nikulin
%A Yu. V. Khivintsev
%A V. K. Sakharov
%A A. V. Kozhevnikov
%A S. L. Vysotsky
%A Yu. A. Filimonov
%T Detection of focused beams of surface magnetostatic waves in YIG / Pt structures
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2024
%P 405-418
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2024_32_3_a8/
%G ru
%F IVP_2024_32_3_a8
M. E. Seleznev; G. M. Dudko; Yu. V. Nikulin; Yu. V. Khivintsev; V. K. Sakharov; A. V. Kozhevnikov; S. L. Vysotsky; Yu. A. Filimonov. Detection of focused beams of surface magnetostatic waves in YIG / Pt structures. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 3, pp. 405-418. http://geodesic.mathdoc.fr/item/IVP_2024_32_3_a8/

[1] Nikitov S. A., Kalyabin D. V., Lisenkov I. V., Slavin A. N., Barabanenkov Yu. N., Osokin S. A., Sadovnikov A. V., Beginin E. N., Morozova M. A., Sharaevskii Yu. P., Filimonov Yu. A., Khivintsev Yu. V., Vysotskii S. L., Sakharov V. K., Pavlov E. S., “Magnonika — novoe napravlenie spintroniki i spin-volnovoi elektroniki”, UFN, 185:10 (2015), 1099–1128 | DOI

[2] Nikitov S. A., Safin A. R. Kalyabin D. V., Sadovnikov A. V., Beginin E. N., Logunov M. V., Morozova M. A., Odintsov S. A., Osokin S. A., Sharaevskaya A. Yu., Sharaevskii Yu. P., Kirilyuk A. I., “Dielektricheskaya magnonika — ot gigagertsev k teragertsam”, UFN, 190:10 (2020), 1009–1040 | DOI

[3] Chumak A. A., Vasyuchka V. I., Serga A. A., Hillebrands B., “Magnon spintronics”, Nature Phys., 11 (2015), 453–461 | DOI

[4] Demidov V. E., Urazhdin S., Loubens G., Klein O., Cros V., Anane A., Demokritov S. O., “Magnetization oscillations and waves driven by pure spin currents”, Phys. Rep., 673 (2017), 1–31 | DOI | MR

[5] Althammer M., “Pure spin currents in magnetically ordered insulator/normal metal heterostructures”, J. Phys. D: Appl. Phys., 51:31 (2018), 313001 | DOI

[6] Demidov V. E., Urazhdin S., Anane A., Cros V., Demokritov S. O., “Spin–orbit-torque magnonics”, Journal of Applied Physics, 127:17 (2020), 170901 | DOI

[7] Brataas A., van Wees B., Klein O., de Loubens G., Viret M., “Spin insulatronics”, Physics Reports, 885 (2020), 1–27 | DOI

[8] Mahmoud A., Ciubotaru F., Vanderveken F., Chumak A. V., Hamdioui S., Adelmann C., Cotofana S., “Introduction to spin wave computing”, J. Appl. Phys., 128:16 (2020) | DOI

[9] Chumak A. V., Kabos P., Wu M., Abert C., Adelmann C., Adeyeye A. O., Akerman J., Aliev F. G., Anane A., Awad A., Back C. H., Barman A., Bauer G. E. W., Becherer M., Beginin E. N., Bittencourt V. A. S. V., Blanter Y. M., Bortolotti P., Boventer I., Bozhko D. A., Bunyaev S. A., Carmiggelt J. J., Cheenikundil R. R., Ciubotaru F., Cotofana S., Csaba G., Dobrovolskiy O. V., Dubs C., Elyasi M., Fripp K. G., Fulara H., Golovchnsiy I. A., Gonzalez-Ballster C., Graczyk P., Grundler D., Gruszecki P., Gubbiotti G., Guslienko K., Haldar A., Hamdioui S., Hertel R., Hillebrands B., Hioki T., Houshang A., Hu C.- M., Huebl H., Huth M., Iacocca E., Jungfleisch M. B., Kakazei G. N., Khitun A., Khymyn R., Kikkawa T., Klaui M., Klein O., Klos J. W., Knauer S., Koraltan S., Kostylev M., Krawczyk M., Krivorotov I. N., Kruglyak V. V., Lachance-Quirion D., Ladak S., Lebrun R., Li Y., Linder M., Macedo R., Mayr S., Melkov G. A., Mieszczak S., Nakamura Y., Nembach H. T., Nikitin A. A., “Advances in Magnetics Roadmap on Spin-Wave Computing”, IEEE Transactions on Magnetics, 58:6 (2022), 0800172 | DOI

[10] Khitun A., “Magnonic holographic devices for special type data processing”, J. Appl. Phys., 113:16 (2013), 164503 | DOI

[11] Gertz F., Kozhevnikov A., Filimonov Y., Nikonov D. E., Khitun A., “Magnonic holographic memory: From proposal to device”, IEEE J.Explor. Solid-State Comput. Devices Circuits, 1 (2015), 67–75 | DOI

[12] Khivintsev Y., Ranjbar M., Gutierrez D., Chiang H., Kozhevnikov A., Filimonov Y., Khitun A., “Prime factorization using magnonic holographic devices”, J. Appl. Phys., 120:12 (2016), 123901 | DOI

[13] Gutierrez D., Chiang H., Bhowmick T., Volodchenkov A. D., Ranjbar M., Liu G., Jiang C., Warren C., Khivintsev Y., Filimonov Y. Garay J., Lake R., Balandin A. A., Khitun A., “Magnonic holographic imaging of magnetic microstructures”, JMMM, 428 (2017), 348–356 | DOI

[14] Papp A., Porod W., Csurgay A. I., Csaba G., “Nanoscale spectrum analyzer based on spin-wave interference”, Sci. Rep., 7 (2017), 9245 | DOI

[15] Csaba G., Papp A., Porod W., “Holographic Algorithms for On-Chip, Non-Boolean Computing”, 17th International Workshop on Computational Electronics, IWCE 2014 (Paris, France), 2014, 33–34 | DOI

[16] Csaba G., Papp A., Porod W., “Perspectives of using spin waves for computing and signal processing”, Phys. Lett. A, 381 (2017), 1471 | DOI

[17] Macia F., Kent A. D. Hoppensteadt F. C., “Spin-wave interference patterns created by spin-torque nano-oscillators for memory and computation”, Nanotechnology, 22 (2011), 095301 | DOI

[18] Csaba G., Papp A., Porod W., “Spin-wave based realization of optical computing primitives”, J. Appl.Phys., 115:17 (2014), 17C741 | DOI

[19] Vogel M., Hillebrands B., von Freymann G., “Spin-Wave Optical Elements: Towards Spin-wave Fourier Optics”, arXiv: 1906.02301v1

[20] Papp A., Csaba G., “Lens Design for Computing With Anisotropic Spin Waves”, IEEE Magn. Lett., 9 (2018), 3706405 | DOI | MR

[21] Vashkovskii A. V., Stalmakhov A. V., Shakhnazaryan D. G., “Formirovanie, otrazhenie i prelomlenie puchkov magnitostaticheskikh voln”, Izvestiya vuzov. Fizika, 1988, no. 11, 57–75 | DOI

[22] Davies C. S., Kruglyak V. V., “Graded-index magnonics”, Low Temperature Physics, 41 (2015), 760–766 | DOI

[23] Schneider T., Serga A. A., Chumak A. V., Sandweg C. W., Trudel S., Wolff S., Kostylev M. P., Tiberkevich V. S., Slavin A. N., Hillebrands B., “Nondiffractive subwavelength wave beams in a medium with externally controlled anisotropy”, Phys. Rev. Lett., 104 (2010), 197203 | DOI

[24] Ulrichs H., Demidov V. E., Demokritov S. O., Urazhdin S., “Spin-torque nano-emitters for magnonic applications”, Appl. Phys. Lett., 100 (2012), 162406 | DOI

[25] Gieniusz R., Ulrichs H., Bessonov V. D., Guzowska U., Stognii A. I., Maziewski A., “Single antidot as a passive way to create caustic spin-wave beams in yttrium iron garnet films”, Appl. Phys. Lett., 102 (2013), 102409 | DOI

[26] Gieniusz R., Bessonov V. D., Guzowska U., Stognii A. I., Maziewski A., “An antidot array as an edge for total non-reflection of spin waves in yttrium iron garnet films”, Appl. Phys. Lett., 104:8 (2014), 082412 | DOI

[27] Mansfeld S., Topp J., Martens K., Toedt J. N., Hansen W., Heitmann D., Mendach S., “Spin Wave Diffraction and Perfect Imaging of a Grating”, Phys. Rev. Lett., 108 (2012), 047204 | DOI

[28] Choi S., Lee K. -S., Kim S. -K., “Spin-wave interference”, Appl. Phys. Lett., 89:6 (2006), 062501 | DOI

[29] Gruszecki P., Kasprzak M., Serebryannikov A. E., Krawczyk M., Śmigaj W., “Microwave excitation of spin wave beams in thin ferromagnetic films”, Sci. Rep., 6 (2016), 22367 | DOI

[30] Körner H. S., Stigloher J., Back C. H., “Excitation and tailoring of diffractive spin-wave beams in NiFe using nonuniform microwave antennas”, Phys. Rev. B, 96 (2017), 100401(R) | DOI

[31] Loayza N., Jungfleisch M. B., Hoffmann A., Bailleul M., Vlaminck V., “Fresnel diffraction of spin waves”, Phys. Rev. B, 98 (2018), 144430 | DOI

[32] Madami M., Khivintsev Y., Gubbiotti G., Dudko G., Kozhevnikov A., Sakharov V., Stal'makhov A., Khitun A., Filimonov Y., “Nonreciprocity of backward volume spin wave beams excited by the curved focusing transducer”, Appl. Phys. Lett., 113:15 (2018), 152403 | DOI

[33] Kajiwara Y., Harii K., Takahashi S., Ohe J., Uchida K., Mizuguchi M., Umezawa H., Kawai H., Ando K., Takanashi K., Maekawa S., Saitoh E., “Transmission of electrical signals by spin-wave interconversion in a magnetic insulator”, Nature, 464 (2010), 262–266 | DOI

[34] Collet M., de Milly X., d’Allivy Kelly O., Naletov V. V., Bernard R., Bortolotti P., Ben Youssef J., Demidov V. E., Demokritov S. O., Prieto J. L., Muñoz M., Cros V., Anane A., de Loubens G., Klein O., “Generation of coherent spin-wave modes in yttrium iron garnet microdiscs by spin–orbit torque”, Nat Commun, 7 (2016), 10377 | DOI

[35] Uchida K. -I., Adachi H., Ota T., Nakayama H., Maekawa S., Saitoh E., “Observation of longitudinal spin-Seebeck effect in magnetic insulators”, Appl. Phys. Lett., 97:17 (2010), 172505 | DOI

[36] Chumak A. V., Serga A. A., Jungfleisch M. B., Neb R., Bozhko D. A., Tiberkevich V. S., Hillebrands B., “Direct detection of magnon spin transport by the inverse spin Hall effect”, Appl. Phys. Lett., 100:8 (2012), 082405 | DOI

[37] d'Allivy Kelly O., Anane A., Bernard R., Ben Youssef J., Hahn C., Molpeceres A. H., Carrétéro C., Jacquet E., Deranlot C., Bortolotti P., Lebourgeois R., Mage J. -C., de Loubens G., Klein O., Cros V., Fert A., “Inverse spin Hall effect in nanometer-thick yttrium iron garnet/Pt system”, Appl. Phys. Lett., 103:8 (2013), 082408 | DOI

[38] Balinsky M., Ranjbar M., Haidar M., Dürrenfeld P., Dumas R. K., Khartsev S., Slavin A., Åkerman J., “Spin pumping and the inverse spin Hall effect via magnetostatic surface spin-wave modes in YIG/Pt bilayers”, IEEE Magn. Lett., 6 (2015), 3000604 | DOI

[39] Balinsky M., Chiang H., Gutierrez D., Khitun A., “Spin wave interference detection via inverse spin Hall effect”, Appl. Phys. Lett., 118:24 (2021), 242402 | DOI

[40] Seleznev M. E., Nikulin Yu. V., Khivintsev Yu. V., Vysotskii S. L., Kozhevnikov A. V., Sakharov V. K., Dudko G. M., Pavlov E. S., Filimonov Yu. A., “Vliyanie trekhmagnonnykh raspadov na generatsiyu EDS poverkhnostnymi magnitostaticheskimi volnami v integralnykh strukturakh ZhIG– Pt”, Izvestiya vuzov. PND, 30:5 (2022), 617–643 | DOI

[41] Seleznev M. E., Nikulin Yu. V.,Sakharov V. K.,Khivintsev Yu. V., Kozhevnikov A. V., Vysotskii S. L., Filimonov Yu. A., “Vliyanie rezonansnogo vzaimodeistviya poverkhnostnykh magnitostaticheskikh voln s obmennymi modami na generatsiyu EDC v strukturakh YIG/Pt”, ZhTF, 91:10 (2021), 1504–1508 | DOI

[42] Seleznev M. E., Nikulin Yu. V., Khivintsev Yu. V., Vysotskii S. L., Kozhevnikov A. V., Sakharov V. K., Dudko G. M., Filimonov Yu. A., “Vliyanie parametricheskoi neustoichivosti na spinovuyu nakachku dipolno-obmennymi poverkhnostnymi magnitostaticheskimi volnami v strukturakh ZhIG–Pt”, Izvestiya vuzov. PND, 31:2 (2023), 225–242 | DOI

[43] Nikulin Yu. V., Vysotskii C. L., Seleznev M. E., Kozhevnikov A. V., Sakharov V. K., Dudko G. M., Khivintsev Yu. V., Filimonov Yu. A., “Chastotnaya zavisimost smeshannoi spinovoi provodimosti struktur YIG/Pt pri spinovoi nakachke PMSV”, FTT, 65:6 (2023), 967–972 | DOI

[44] Dudko G. M., Kozhevnikov A. V., Sakharov V. K., Stalmakhov A. V., Filimonov Yu. A., Khivintsev Yu. V., “Raschet fokusiruyuschikh preobrazovatelei spinovykh voln metodom mikromagnitnogo modelirovaniya”, Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya: Fizika, 18:2 (2018), 92–102 | DOI

[45] Damon R., Eshbach J., “Magnetostatic modes of a ferromagnetic slab”, J. Phys.Chem. Sol, 19:3–4 (1961), 308–320 | DOI

[46] Donahue M. J., Porter D. G., “OOMMF user’s guide, version 1.0”, Interagency Report NIST 6376, National Institute of Standards and Technology, Gaithersburg, MD, 1999 | DOI